Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic

被引:0
|
作者
Wan, Yingcai [1 ]
Fang, Lijin [1 ]
机构
[1] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110170, Peoples R China
关键词
semantic segmentation; 3D reconstruction; SLAM; consistent segmentation;
D O I
10.1587/transfun.2023EAP1095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
2D and 3D semantic segmentation play important roles in robotic scene understanding. However, current 3D semantic segmentation heavily relies on 3D point clouds, which are susceptible to factors such as point cloud noise, sparsity, estimation and reconstruction errors, and data imbalance. In this paper, a novel approach is proposed to enhance 3D semantic segmentation by incorporating 2D semantic segmentation from RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented into 2D semantic maps using the tracking pipeline of Simultaneous Localization and Mapping (SLAM). This process effectively propagates object labels from full scans to corresponding labels in partial views with high probability. Subsequently, a novel Semantic Projection (SP) block is introduced, which integrates features extracted from localized 2D fragments across different camera viewpoints into their corresponding 3D semantic features. Lastly, the 3D semantic segmentation network utilizes a combination of 2D-3D fusion features to facilitate a merged semantic segmentation process for both 2D and 3D. Extensive experiments conducted on public datasets demonstrate the effective performance of the proposed 2D-assisted 3D semantic segmentation method.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 50 条
  • [1] Semantic Instance Segmentation in a 3D Traffic Scene Reconstruction task
    Hadi, Shiqah
    Phon-Amnuaisuk, Somnuk
    Tan, Soon-Jiann
    2020 59TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2020, : 186 - 191
  • [2] Object-Oriented 3D Semantic Mapping Based on Instance Segmentation
    Chi, Jinxin
    Wu, Hao
    Tian, Guohui
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (04) : 695 - 704
  • [3] 2D TO 3D LABEL PROPAGATION FOR THE SEMANTIC SEGMENTATION OF HERITAGE BUILDING POINT CLOUDS
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 861 - 867
  • [4] Semantic Segmentation and 3D Reconstruction of Concrete Cracks
    Shokri, Parnia
    Shahbazi, Mozhdeh
    Nielsen, John
    REMOTE SENSING, 2022, 14 (22)
  • [5] HCFS3D: Hierarchical coupled feature selection network for 3D semantic and instance segmentation
    Tan, Jingang
    Wang, Kangru
    Chen, Lili
    Zhang, Guanghui
    Li, Jiamao
    Zhang, Xiaolin
    IMAGE AND VISION COMPUTING, 2021, 109
  • [6] Deep Projective 3D Semantic Segmentation
    Lawin, Felix Jaremo
    Danelljan, Martin
    Tosteberg, Patrik
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 95 - 107
  • [7] Are 3D better than 2D Convolutional Neural Networks for Medical Imaging Semantic Segmentation?
    Crespi, Leonardo
    Loiacono, Daniele
    Sartori, Pierandrea
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Learning 3D Semantic Scene Graphs with Instance Embeddings
    Wald, Johanna
    Navab, Nassir
    Tombari, Federico
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (03) : 630 - 651
  • [9] OnlyCaps-Net, a Capsule only Based Neural Network for 2D and 3D Semantic Segmentation
    Bonheur, Savinien
    Thaler, Franz
    Pienn, Michael
    Olschewski, Horst
    Bischof, Horst
    Urschler, Martin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 340 - 349
  • [10] Learning 3D Semantic Scene Graphs with Instance Embeddings
    Johanna Wald
    Nassir Navab
    Federico Tombari
    International Journal of Computer Vision, 2022, 130 : 630 - 651