Machine learning in business and finance: a literature review and research opportunities

被引:7
|
作者
Gao, Hanyao [1 ]
Kou, Gang [2 ]
Liang, Haiming [1 ]
Zhang, Hengjie [3 ]
Chao, Xiangrui [1 ]
Li, Cong-Cong [5 ]
Dong, Yucheng [1 ,4 ]
机构
[1] Sichuan Univ, Business Sch, Chengdu 610065, Peoples R China
[2] Southwestern Univ Finance & Econ, Fac Business Adm, Sch Business Adm, Chengdu 611130, Peoples R China
[3] Hohai Univ, Business Sch, Nanjing 211100, Peoples R China
[4] Xiangjiang Lab, Changsha 410205, Peoples R China
[5] Southwest Jiaotong Univ, Sch Econ & Management, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Business; Finance; Marketing; SUPPORT VECTOR MACHINE; SHORT-TERM-MEMORY; BIG DATA; DEEP; PREDICTION; ALGORITHMS; NETWORKS; PRICES; DRIVEN; MODELS;
D O I
10.1186/s40854-024-00629-z
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study provides a comprehensive review of machine learning (ML) applications in the fields of business and finance. First, it introduces the most commonly used ML techniques and explores their diverse applications in marketing, stock analysis, demand forecasting, and energy marketing. In particular, this review critically analyzes over 100 articles and reveals a strong inclination toward deep learning techniques, such as deep neural, convolutional neural, and recurrent neural networks, which have garnered immense popularity in financial contexts owing to their remarkable performance. This review shows that ML techniques, particularly deep learning, demonstrate substantial potential for enhancing business decision-making processes and achieving more accurate and efficient predictions of financial outcomes. In particular, ML techniques exhibit promising research prospects in cryptocurrencies, financial crime detection, and marketing, underscoring the extensive opportunities in these areas. However, some limitations regarding ML applications in the business and finance domains remain, including issues related to linguistic information processes, interpretability, data quality, generalization, and the oversights related to social networks and causal relationships. Thus, addressing these challenges is a promising avenue for future research.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Machine Learning in Finance
    Akoglu, Leman
    Chawla, Nitesh
    Domingo-Ferrer, Josep
    Kurshan, Eren
    Kumar, Senthil
    Naware, Vidyut
    Rodriguez-Serrano, Jose A.
    Chaturvedi, Isha
    Nagrecha, Saurabh
    Das, Mahashweta
    Faruquie, Tanveer
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 6703 - 6703
  • [32] Bias in Machine Learning: A Literature Review
    Mavrogiorgos, Konstantinos
    Kiourtis, Athanasios
    Mavrogiorgou, Argyro
    Menychtas, Andreas
    Kyriazis, Dimosthenis
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [33] A Systematic Literature Review on Distributed Machine Learning in Edge Computing
    Poncinelli Filho, Carlos
    Marques Jr, Elias
    Chang, Victor
    dos Santos, Leonardo
    Bernardini, Flavia
    Pires, Paulo F.
    Ochi, Luiz
    Delicato, Flavia C.
    SENSORS, 2022, 22 (07)
  • [34] Machine learning for suicidal ideation identification: A systematic literature review
    Heckler, Wesllei Felipe
    de Carvalho, Juliano Varella
    Barbosa, Jorge Luis Victoria
    COMPUTERS IN HUMAN BEHAVIOR, 2022, 128
  • [35] Use of machine learning in osteoarthritis research: a systematic literature review
    Binvignat, Marie
    Pedoia, Valentina
    Butte, Atul J.
    Louati, Karine
    Klatzmann, David
    Berenbaum, Francis
    Mariotti-Ferrandiz, Encarnita
    Sellam, Jeremie
    RMD OPEN, 2022, 8 (01):
  • [36] Machine learning in international business
    Bosma, Bas
    van Witteloostuijn, Arjen
    JOURNAL OF INTERNATIONAL BUSINESS STUDIES, 2024, 55 (06) : 676 - 702
  • [37] Machine learning in finance: A topic modeling approach
    Aziz, Saqib
    Dowling, Michael
    Hammami, Helmi
    Piepenbrink, Anke
    EUROPEAN FINANCIAL MANAGEMENT, 2022, 28 (03) : 744 - 770
  • [38] A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges
    An, Qi
    Rahman, Saifur
    Zhou, Jingwen
    Kang, James Jin
    SENSORS, 2023, 23 (09)
  • [39] When Smart Cities Get Smarter via Machine Learning: An In-Depth Literature Review
    Band, Shahab S.
    Ardabili, Sina
    Sookhak, Mehdi
    Chronopoulos, Anthony Theodore
    Elnaffar, Said
    Moslehpour, Massoud
    Csaba, Mako
    Torok, Bernat
    Pai, Hao-Ting
    Mosavi, Amir
    IEEE ACCESS, 2022, 10 : 60985 - 61015
  • [40] Machine learning in supply chain management: systematic literature review and future research agenda
    Vlachos, Ilias
    Reddy, Pulagam Gautam
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2025,