Stochastic Submodular Maximization via Polynomial Estimators

被引:0
作者
Ozcan, Gozde [1 ]
Ioannidis, Stratis [1 ]
机构
[1] Northeastern Univ, Elect & Comp Engn Dept, Boston, MA 02115 USA
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II | 2023年 / 13936卷
关键词
submodular maximization; stochastic optimization; greedy algorithm;
D O I
10.1007/978-3-031-33377-4_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study stochastic submodular maximization problems with general matroid constraints, which naturally arise in online learning, team formation, facility location, influence maximization, active learning and sensing objective functions. In other words, we focus on maximizing submodular functions that are defined as expectations over a class of submodular functions with an unknown distribution. We show that for monotone functions of this form, the stochastic continuous greedy algorithm [19] attains an approximation ratio (in expectation) arbitrarily close to (1 - 1/e) approximate to 63% using a polynomial estimation of the gradient. We argue that using this polynomial estimator instead of the prior art that uses sampling eliminates a source of randomness and experimentally reduces execution time.
引用
收藏
页码:535 / 548
页数:14
相关论文
共 25 条
[11]  
Karimi MR, 2017, ADV NEUR IN, V30
[12]  
Kazemi E, 2019, PR MACH LEARN RES, V97
[13]  
Kempe David, 2003, Proceeding KDD'03 Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, P137, DOI DOI 10.1145/956750.956769
[14]  
Lei Q., 2019, MLSys
[15]  
Lin H., 2011, ANN M ASS COMP LING, P510
[16]   Kelly Cache Networks [J].
Mahdian, Milad ;
Moharrer, Armin ;
Ioannidis, Stratis ;
Yeh, Edmund .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (03) :1130-1143
[17]  
Mirzasoleiman B., 2016, ICML
[18]  
Mokhtari A, 2020, J MACH LEARN RES, V21, P1
[19]  
Mokhtari Aryan, 2018, P MACHINE LEARNING R, V84
[20]   ANALYSIS OF APPROXIMATIONS FOR MAXIMIZING SUBMODULAR SET FUNCTIONS .1. [J].
NEMHAUSER, GL ;
WOLSEY, LA ;
FISHER, ML .
MATHEMATICAL PROGRAMMING, 1978, 14 (03) :265-294