Advanced modeling of pharmaceutical solubility in solvents using artificial intelligence techniques: assessment of drug candidate for nanonization processing

被引:0
作者
Al Hagbani, Turki [1 ]
Alshehri, Sameer [2 ]
Bawazeer, Sami [3 ]
机构
[1] Univ Hail, Coll Pharm, Dept Pharmaceut, Hail, Saudi Arabia
[2] Taif Univ, Coll Pharm, Dept Pharmaceut & Ind Pharm, Taif, Saudi Arabia
[3] Umm Al Qura Univ, Fac Pharm, Dept Pharmaceut Sci, Mecca, Saudi Arabia
关键词
drug development; solubility prediction; optimization; machine learning; modeling; SUPERCRITICAL CARBON-DIOXIDE; WATER CYCLE ALGORITHM; OPTIMIZATION; REGRESSION;
D O I
10.3389/fmed.2024.1435675
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This research is an analysis of multiple regression models developed for predicting ketoprofen solubility in supercritical carbon dioxide under different levels of T(K) and P(bar) as input features. Solubility of the drug was correlated to pressure and temperature as major operational variables. Selected models for this study are Piecewise Polynomial Regression (PPR), Kernel Ridge Regression (KRR), and Tweedie Regression (TDR). In order to improve the performance of the models, hyperparameter tuning is executed utilizing the Water Cycle Algorithm (WCA). Among, the PPR model obtained the best performance, with an R2 score of 0.97111, alongside an MSE of 1.6867E-09 and an MAE of 3.01040E-05. Following closely, the KRR model demonstrated a good performance with an R2 score of 0.95044, an MSE of 2.5499E-09, and an MAE of 3.49707E-05. In contrast, the TDR model produces a lower R2 score of 0.84413 together with an MSE of 7.4249E-09 and an MAE of 5.69159E-05.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] Modeling and computational study on prediction of pharmaceutical solubility in supercritical CO2 for manufacture of nanomedicine for enhanced bioavailability
    Abdelbasset, Walid Kamal
    Elkholi, Safaa M.
    Ismail, Khadiga Ahmed
    Alalwani, Thamer A. A. M.
    Hachem, Kadda
    Mohamed, Abdullah
    Kurniawan, Tonni Agustiono
    Rushchitc, Anastasia Andreevna
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [2] Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm
    Abou El-Ela, Adel A.
    El-Sehiemy, Ragab A.
    Abbas, Ahmed Samir
    [J]. IEEE SYSTEMS JOURNAL, 2018, 12 (04): : 3629 - 3636
  • [3] Theoretical investigations on the manufacture of drug nanoparticles using green supercritical processing: Estimation and prediction of drug solubility in the solvent using advanced methods
    Abourehab, Mohammed A. S.
    Al-Shati, Ahmed Salah
    Venkatesan, Kumar
    Alshehri, Sameer
    Alzhrani, Rami M.
    Alsubaiyel, Amal M.
    Abduljabbar, Maram H.
    Alosaimi, Manal E.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 368
  • [4] Assessment of solid-dosage drug nanonization by theoretical advanced models: Modeling of solubility variations using hybrid machine learning models
    Abouzied, Amr S.
    Alshahrani, Saad M.
    Hani, Umme
    Obaidullah, Ahmad J.
    Al Awadh, Ahmed Abdullah
    Lahiq, Ahmed A.
    Al-fanhrawi, Halah Jawad
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2023, 47
  • [5] Numerical optimization of drug solubility inside the supercritical carbon dioxide system using different machine learning models
    Almehizia, Abdulrahman A.
    Naglah, Ahmed M.
    Alkahtani, Hamad M.
    Hani, Umme
    Ghazwani, Mohammed
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2023, 392
  • [6] Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility
    Bagher, Hamidrez
    Notej, Behrouz
    Shahsavari, Sara
    Hashemipour, Hassan
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 177
  • [7] Solubility of fenamate drugs in supercritical carbon dioxide by using a semi-flow apparatus with a continuous solvent-washing step in the depressurization line
    Banchero, Mauro
    Manna, Luigi
    [J]. JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 107 : 400 - 407
  • [8] Model-driven design using population balance modelling for high-shear wet granulation
    Bellinghausen, Stefan
    Gavi, Emmanuela
    Jerke, Laura
    Barrasso, Dana
    Salman, Agba D.
    Litster, James D.
    [J]. POWDER TECHNOLOGY, 2022, 396 : 578 - 595
  • [9] Flexible Tweedie regression models for continuous data
    Bonat, Wagner Hugo
    Kokonendji, Celestin C.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (11) : 2138 - 2152
  • [10] Botchkarev A, 2018, ARXIV