Research on Total Ionizing Dose Radiation Hardening by Design Method for Bandgap Reference Based on Real-Time Monitoring and Adaptive Compensation

被引:0
作者
Guo, Zhongjie [1 ]
Ren, Yuan [1 ]
Wang, Yapeng [1 ]
Qiu, Ziyi [1 ]
Li, Mengli [1 ]
机构
[1] Xian Univ Technol, Dept Automat & Elect Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Total Dose Effect; Bandgap Reference; Adaptive Compeensation; Circuit-Level Hardening; Real Time Monitoring; VOLTAGE REFERENCE; REFERENCE CIRCUIT; CMOS; DEGRADATION;
D O I
10.1166/jno.2024.3636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bandgap reference circuits can be affected by bipolar transistor base leakage currents and current gain degradation in Total-dose radiation environments. These factors can cause the output voltage of Bandgap reference to shift, which can make Bandgap reference less reliable. Aiming at the problems of high cost, large layout area, and low universality that traditional total dose hardening methods for Bandgap reference based on process, layout, and device can bring, an on-chip total dose real-time monitoring and adaptive compensation method is proposed to realize circuit-level total dose hardening and improve the radiation resistance of Bandgap references. Based on the 0.18 mu m Bipolar-CMOS-DMOS process, specific circuit design, layout design, back-end physical implementation and full engineering based validation of the proposed approach, and the results indicate that with different process anles, the Bandgap reference output dirt increased from 3.4-18.5 mV voltage dirft (100-300 krad) to a maximum of 1 mV dirt (100-300 krad) prior to hardening. This provides a new method for the design of irradiatioresistant hardening of Bandgap references at the circuit and system level.
引用
收藏
页码:857 / 863
页数:7
相关论文
共 20 条
[1]  
Adams DA, 2014, 2014 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW)
[2]   Total-ionizing-dose effects in modern CMOS technologies [J].
Barnaby, H. J. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (06) :3103-3121
[3]  
Chen Z., 2018, 2018 IEEE INT C RAD, P1
[4]  
Cong Z., 2018, 2018 IEEE INT C RAD, P1
[5]   Analysis of Bipolar Integrated Circuit Degradation Mechanisms Against Combined TID-DD Effects [J].
Ferraro, Rudy ;
Alia, Ruben Garcia ;
Danzeca, Salvatore ;
Masi, Alessandro .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) :1585-1593
[6]  
Greig T., 2013, 2013 14 EUR C RAD IT, P1
[7]   A radiation hard bandgap reference circuit in a standard 0.13 μm CMOS technology [J].
Gromov, Vladimir ;
Annema, Anne Johan ;
Kluit, Ruud ;
Visschers, Jan Lammert ;
Timmer, P. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (06) :2727-2733
[8]  
Kumar M., 2017, 2017 IEEE 24 INT S P, P1
[9]  
Li TH, 2017, IEEE INT SYMP PHYS
[10]   Radiation-Hardened CMOS Negative Voltage Reference for Aerospace Application [J].
Liu, Fan ;
Yang, Feng ;
Wang, Han ;
Xiang, Xun ;
Zhou, Xichuan ;
Hu, Shengdong ;
Lin, Zhi ;
Bermak, Amine ;
Tang, Fang .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (09) :2505-2510