Universality for tropical and logarithmic maps

被引:0
作者
Corrigan, Gabriel [1 ]
Nabijou, Navid [2 ]
Simms, Dan [3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[3] UCL, Dept Math, London Sch Geometry & Number Theory, Gower St, London WC1E 6BT, England
来源
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE | 2024年 / 8卷
关键词
Algebraic geometry; moduli spaces; tropical curves; stable logarithmic maps; monoids; universality; STABLE MAPS; ALGEBRAIC-GEOMETRY; MURPHYS-LAW; GENUS ONE; MODULI; POLYTOPES; THEOREMS; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every toric monoid appears in a space of maps from tropical curves to an orthant. It follows that spaces of logarithmic maps to Artin fans exhibit arbitrary toric singularities: a virtual universality theorem for logarithmic maps to pairs. The target rank depends on the chosen singularity: we show that the cone over the 7-gon never appears in a space of maps to a rank 1 target. We obtain similar results for tropical maps to affine ffi ne space.
引用
收藏
页数:22
相关论文
共 40 条
  • [1] Abramovich D., 2016, NONARCHIMEDEAN TROPI, P287
  • [2] Decomposition of degenerate Gromov-Witten invariants
    Abramovich, Dan
    Chen, Qile
    Gross, Mark
    Siebert, Bernd
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (10) : 2020 - 2075
  • [3] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [4] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [5] A UNIVERSALITY THEOREM FOR PROJECTIVELY UNIQUE POLYTOPES AND A CONJECTURE OF SHEPHARD
    Adiprasito, Karim A.
    Padrol, Arnau
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 239 - 255
  • [6] Universality Theorems for Inscribed Polytopes and Delaunay Triangulations
    Adiprasito, Karim A.
    Padrol, Arnau
    Theran, Louis
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (02) : 412 - 431
  • [7] Battistella L., 2022, Geom. Topol.
  • [8] Curve counting in genus one: Elliptic singularities and relative geometry
    Battistella, Luca
    Nabijou, Navid
    Ranganathan, Dhruv
    [J]. ALGEBRAIC GEOMETRY, 2021, 8 (06): : 637 - 679
  • [9] The intrinsic normal cone
    Behrend, K
    Fantechi, B
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (01) : 45 - 88
  • [10] Stacks of stable maps and Gromov-Witten invariants
    Behrend, K
    Manin, Y
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) : 1 - 60