A note on the asymptotic behavior of a mildly unstable integer-valued AR(1) model

被引:1
|
作者
Peng, Ling [1 ,2 ]
Xie, Shujin [1 ,2 ]
Liu, Xiaohui [2 ]
Zhu, Fukang [3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang 330013, Jiangxi, Peoples R China
[3] Jilin Univ, Sch Math, Changchun, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Integer-valued autoregressive models; mildly unstable; conditional least squares estimator; limiting distribution;
D O I
10.1080/02331888.2024.2400185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note examines the conditional least squares (CLS) estimators for integer-valued autoregressive (INAR) models, with a focus on the INAR(1) model. Our investigation reveals that the joint limiting distribution of the CLS estimators for the autoregressive coefficient and the mean of the model errors is degenerate in the case of mildly unstable INAR(1) models with moderate deviations from unity. This degeneracy may pose challenges for statistical inference. We provide commenting notes based on the asymptotic results to address this issue. Additionally, we conduct simulation studies and analyze a real-world dataset to validate the theoretical findings.
引用
收藏
页码:1248 / 1266
页数:19
相关论文
共 50 条
  • [21] A negative binomial integer-valued GARCH model
    Zhu, Fukang
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (01) : 54 - 67
  • [22] A Periodic Bivariate Integer-Valued Autoregressive Model
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 455 - 477
  • [23] A generalized mixture integer-valued GARCH model
    Mao, Huiyu
    Zhu, Fukang
    Cui, Yan
    STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (03): : 527 - 552
  • [24] A generalized mixture integer-valued GARCH model
    Huiyu Mao
    Fukang Zhu
    Yan Cui
    Statistical Methods & Applications, 2020, 29 : 527 - 552
  • [25] A geometric minification integer-valued autoregressive model
    Aleksic, Milena S.
    Ristic, Miroslav M.
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 265 - 280
  • [26] Bayesian generalizations of the integer-valued autoregressive model
    C. Marques F., Paulo
    Graziadei, Helton
    Lopes, Hedibert F.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (02) : 336 - 356
  • [27] Note on reflexivity of some spaces of continuous integer-valued functions
    Pol, Roman
    Smentek, Filip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 251 - 257
  • [28] Nearly unstable integer-valued ARCH process and unit root testing
    Barreto-Souza, Wagner
    Chan, Ngai Hang
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 402 - 424
  • [29] An empirical likelihood-based unified test for the integer-valued AR(1) models
    Zhang, Jing
    Li, Bo
    Wang, Yu
    Wei, Xinyi
    Liu, Xiaohui
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 232
  • [30] Mean targeting estimator for the integer-valued GARCH(1,1) model
    Li, Qi
    Zhu, Fukang
    STATISTICAL PAPERS, 2020, 61 (02) : 659 - 679