Identifying the Relationship Structure Among Multiple Datasets Using Independent Vector Analysis: Application to Multi-Task fMRI Data

被引:0
作者
Lehmann, Isabell [1 ]
Hasija, Tanuj [1 ]
Gabrielson, Ben [2 ]
Akhonda, Mohammad A. B. S. [2 ]
Calhoun, Vince D. [3 ,4 ]
Adali, Tulay [2 ]
机构
[1] Paderborn Univ, Signal & Syst Theory Grp, D-33098 Paderborn, Germany
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[3] Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30303 USA
[4] Emory Univ, Atlanta, GA 30303 USA
关键词
Blind source separation; bootstrap; data-driven; fMRI; independent vector analysis; relationship structure; SUBGROUP IDENTIFICATION; DATA FUSION; COMPONENT; TASK;
D O I
10.1109/ACCESS.2024.3435526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying relationships among multiple datasets is an effective way to summarize information and has been growing in importance. In this paper, we propose a robust 3-step method for identifying the relationship structure among multiple datasets based on Independent Vector Analysis (IVA) and bootstrap-based hypothesis testing. Unlike previous approaches, our theory-backed method eliminates the need for user-defined thresholds and can effectively handle non-Gaussian data. It achieves this by incorporating higher-order statistics through IVA and employing an eigenvalue decomposition-based feature extraction approach without distributional assumptions. This way, our method estimates more interpretable components and effectively identifies the relationship structure using hierarchical clustering. Simulation results demonstrate the effectiveness of our method, as it achieves perfect Adjusted Mutual Information (AMI) for different values of the correlation between the components. When applied to multi-task fMRI data from patients with schizophrenia and healthy controls, our method successfully reveals activated brain regions associated with the disorder, and identifies the relationship structure of task datasets that matches our prior knowledge of the experiment. Moreover, our proposed method extends beyond task datasets, offering broad applicability in subgroup identification in neuroimaging and other domains.
引用
收藏
页码:109443 / 109456
页数:14
相关论文
共 41 条
[21]  
Lacadie CM., 2008, P 14 ANN M ORG HUM B, P771
[22]   MULTI-TASK FMRI DATA FUSION USING IVA AND PARAFAC2 [J].
Lehmann, Isabell ;
Acar, Evrim ;
Hasija, Tanuj ;
Akhonda, M. A. B. S. ;
Calhoun, Vince D. ;
Schreier, Peter J. ;
Adali, Tulay .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :1466-1470
[23]   Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials [J].
Lipkovich, Ilya ;
Dmitrienko, Alex ;
D'Agostino, Ralph B., Sr. .
STATISTICS IN MEDICINE, 2017, 36 (01) :136-196
[24]   Subgroup identification for precision medicine: A comparative review of 13 methods [J].
Loh, Wei-Yin ;
Cao, Luxi ;
Zhou, Peigen .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (05)
[25]   Independent vector analysis for common subspace analysis: Application to multi -subject fMRI data yields meaningful subgroups of schizophrenia [J].
Long, Qunfang ;
Bhinge, Suchita ;
Calhoun, Vince D. ;
Adali, Tulay .
NEUROIMAGE, 2020, 216
[26]  
Long QF, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P2581, DOI 10.1109/ICASSP.2018.8461646
[27]   A Method to Fuse fMRI Tasks Through Spatial Correlations: Applied to Schizophrenia [J].
Michael, Andrew M. ;
Baum, Stefi A. ;
Fries, Jill F. ;
Ho, Beng-Choon ;
Pierson, Ronald K. ;
Andreasen, Nancy C. ;
Calhoun, Vince D. .
HUMAN BRAIN MAPPING, 2009, 30 (08) :2512-2529
[28]   The "why" and "how" of JointICA: Results from a visual detection task [J].
Mijovic, Bogdan ;
Vanderperren, Katrien ;
Novitskiy, Nikolay ;
Vanrumste, Bart ;
Stiers, Peter ;
Van den Bergh, Bea ;
Lagae, Lieven ;
Sunaert, Stefan ;
Wagemans, Johan ;
Van Huffel, Sabine ;
De Vos, Maarten .
NEUROIMAGE, 2012, 60 (02) :1171-1185
[29]   Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review [J].
Mwansisya, Tumbwene E. ;
Hu, Aimin ;
Li, Yihui ;
Chen, Xudong ;
Wu, Guowei ;
Huang, Xiaojun ;
Lv, Dongsheng ;
Li, Zhou ;
Liu, Chang ;
Xu, Zhimin ;
Feng, Jianfeng ;
Liu, Zhening .
SCHIZOPHRENIA RESEARCH, 2017, 189 :9-18
[30]  
National Research Council (U.S.) Committee on a Framework forDeveloping a New Taxonomy of Disease, 2011, Toward Precision Medicine:Building a Knowledge Network for Biomedical Research and a NewTaxonomy of Disease