Bayesian learning of feature spaces for multitask regression

被引:1
|
作者
Sevilla-Salcedo, Carlos [1 ,2 ]
Gallardo-Antolin, Ascension [1 ]
Gomez-Verdejo, Vanessa [1 ]
Parrado-Hernandez, Emilio [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911, Madrid, Spain
[2] Aalto Univ, Dept Comp Sci, Helsinki 02150, Finland
关键词
Kernel methods; Random fourier features; Bayesian regression; Multitask regression; Extreme learning machine; Random vector functional link networks; MULTIVARIATE REGRESSION; MACHINE; TUTORIAL; NETWORKS; NET;
D O I
10.1016/j.neunet.2024.106619
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel approach to learn multi-task regression models with constrained architecture complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and output layers. The RFF-based hidden layer inherits the robustness of kernel methods. The Bayesian formulation enables promoting multioutput sparsity: all tasks interplay during the optimisation to select a compact subset of the hidden layer units that serve as common non-linear mapping for every tasks. The experimental results show that the RFF-BLR framework can lead to significant performance improvements compared to the state-of-the-art methods in multitask nonlinear regression, especially in small-sized training dataset scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis
    Yamazaki, Keisuke
    NEURAL NETWORKS, 2012, 31 : 73 - 80
  • [22] Multitask Extreme Learning Machine for Visual Tracking
    Liu, Huaping
    Sun, Fuchun
    Yu, Yuanlong
    COGNITIVE COMPUTATION, 2014, 6 (03) : 391 - 404
  • [23] Random projections for Bayesian regression
    Leo N. Geppert
    Katja Ickstadt
    Alexander Munteanu
    Jens Quedenfeld
    Christian Sohler
    Statistics and Computing, 2017, 27 : 79 - 101
  • [24] A primer on Bayesian distributional regression
    Umlauf, Nikolaus
    Kneib, Thomas
    STATISTICAL MODELLING, 2018, 18 (3-4) : 219 - 247
  • [25] Random projections for Bayesian regression
    Geppert, Leo N.
    Ickstadt, Katja
    Munteanu, Alexander
    Quedenfeld, Jens
    Sohler, Christian
    STATISTICS AND COMPUTING, 2017, 27 (01) : 79 - 101
  • [26] Bayesian bootstrap multivariate regression
    Heckelei, T
    Mittelhammer, RC
    JOURNAL OF ECONOMETRICS, 2003, 112 (02) : 241 - 264
  • [27] On model selection in Bayesian regression
    Mostofi, Amin Ghalamfarsa
    Behboodian, Javad
    METRIKA, 2007, 66 (03) : 259 - 268
  • [28] On model selection in Bayesian regression
    Amin Ghalamfarsa Mostofi
    Javad Behboodian
    Metrika, 2007, 66 : 259 - 268
  • [29] Random multi-scale kernel-based Bayesian distribution regression learning
    Dong, Xue-Mei
    Gu, Yin-He
    Shi, Jian
    Xiang, Kun
    KNOWLEDGE-BASED SYSTEMS, 2020, 201
  • [30] A Regularization Framework for Learning Over Multitask Graphs
    Nassif, Roula
    Vlaski, Stefan
    Richard, Cedric
    Sayed, Ali H.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (02) : 297 - 301