A Multihop Graph Rectify Attention and Spectral Overlap Grouping Convolutional Fusion Network for Hyperspectral Image Classification

被引:4
|
作者
Shi, Cuiping [1 ,2 ]
Yue, Shuheng [1 ]
Wu, Haiyang [1 ]
Zhu, Fei [1 ]
Wang, Liguo [3 ]
机构
[1] Qiqihar Univ, Dept Commun Engn, Qiqihar 161000, Peoples R China
[2] Huzhou Univ, Coll Informat Engn, Huzhou 313000, Peoples R China
[3] Dalian Nationalities Univ, Coll Informat & Commun Engn, Dalian 116000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Convolution; Image classification; Data mining; Convolutional neural networks; Spread spectrum communication; Convolutional neural networks (CNNs); few samples; graph convolution; hyperspectral image (HSI) classification; REPRESENTATION;
D O I
10.1109/TGRS.2024.3412131
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification due to their ability to extract image features effectively. However, under the condition of limited samples, the modeling ability of CNNs for the relationships among samples is limited. At present, research on the classification of HSIs with a small number of samples remains an important challenge in the field of HSI processing. Recently, graph convolutional networks (GCNs) have been applied in HSI classification tasks. In this article, a multihop graph rectifies attention and spectral overlap grouping convolutional fusion network (MRSGFN) for HSI classification is proposed. In the graph convolution branch, a multihop graph rectify attention (MHRA) is designed to weight and correct the features extracted by graph convolution. In the convolutional branch, to solve the problem of dimensionality disaster caused by high spectral dimension with a small number of samples, a spectral intra group inter group feature extraction module (SI2FEM) based on spectral overlap grouping is constructed. In order to better fuse the features extracted from CNNs and GCNs, a Gaussian weighted fusion module (GWFM) is elaborately designed in this article. The features extracted by different branches are assigned different weights by GWFM through a 2-D Gaussian map and then fused. Numerous experiments were conducted on three common datasets and showed that the classification performance of the proposed MRSGFN is superior to other advanced methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Sandwich Convolutional Neural Network for Hyperspectral Image Classification Using Spectral Feature Enhancement
    Gao, Hongmin
    Chen, Zhonghao
    Li, Chenming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3006 - 3015
  • [22] Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Du, Bo
    Zhang, Lefei
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3162 - 3177
  • [23] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [24] Broad Graph Convolutional Neural Network and Its Application in Hyperspectral Image Classification
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (02): : 610 - 616
  • [25] Separable Deep Graph Convolutional Network Integrated With CNN and Prototype Learning for Hyperspectral Image Classification
    Lu, Yingjie
    Mei, Shaohui
    Xu, Fulin
    Ma, Mingyang
    Wang, Xiaofei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [26] Multibranch Fusion: A Multibranch Attention Framework by Combining Graph Convolutional Network and CNN for Hyperspectral Image Classification
    Liu, Xun
    Ng, Alex Hay-Man
    Ge, Linlin
    Lei, Fangyuan
    Liao, Xuejiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [28] Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification With Limited Samples
    Cheng, Shun
    Xue, Zhaohui
    Li, Ziyu
    Xu, Aijun
    Su, Hongjun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14521 - 14542
  • [29] Hyperspectral Image Classification Based on Graph Transformer Network and Graph Attention Mechanism
    Zhao, Xiaofeng
    Niu, Jiahui
    Liu, Chuntong
    Ding, Yao
    Hong, Danfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Hyperspectral Image Classification Framework Based on Multichannel Graph Convolutional Networks and Class-Guided Attention Mechanism
    Feng, Hao
    Wang, Yongcheng
    Chen, Chi
    Xu, Dongdong
    Zhao, Zhikang
    Zhao, Tianqi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15