NECP-panda: A neutronics and thermal-hydraulic analysis code for pebble-bed high temperature gas-cooled reactor

被引:1
作者
Wu, Yuxuan [1 ]
Wang, Yongping [1 ]
Qin, Shuai [1 ]
Cao, Liangzhi [1 ]
Wu, Hongchun [1 ]
Luo, Yong [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[2] HUANENG Nucl Energy Technol Res Inst, Shanghai 200126, Peoples R China
关键词
PB-HTGR; Neutronics; HTR-PM; Initial fuel loading; Reactivity worth; Monte Carlo; GENERATION; PHYSICS;
D O I
10.1016/j.anucene.2024.110814
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
As one of the fourth-generation nuclear energy systems, the Pebble-Bed High Temperature Gas-cooled Reactor (PB-HTGR) shows promising prospects. Aiming to address the emerging requirements in the design analysis and technological improvement of the PB-HTGR core, the Nuclear Engineering Computational Physics (NECP) Laboratory of Xi'an Jiaotong University is autonomously developing a neutronics and thermal-hydraulic analysis code named NECP-Panda. The development work pertaining to the steady-state neutronics calculations for the reactor core has been successfully completed. This paper presents the computational framework of NECP-Panda, focusing on the theories and methodologies of neutronics calculation. Based on the model of the High Temperature Reactor Pebble-Bed Module (HTR-PM) in China, NECP-Panda conducted initial fuel loading calculations and absorber worth calculations. Numerical results demonstrate a high consistency between NECP-Panda's critical loading height prediction for HTR-PM and the Monte Carlo (MC) continuous energy calculation results, with the number of loading pebbles at criticality closely approximating experimental result. Moreover, reactivity worth for various absorber combinations and control rod integral worth curves show satisfactory agreement. NECP-Panda demonstrates exceptional computational capabilities, accuracy and acceptable efficiency in neutronics calculations for the PB-HTGR, laying a solid foundation for the subsequent development of other modules.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Major milestones of HTR development in Germany and still open research issues [J].
Allelein, H. -J. ;
Verfondern, K. .
ANNALS OF NUCLEAR ENERGY, 2018, 116 :114-127
[2]   STREAMING EFFECTS AND COLLISION PROBABILITIES IN LATTICES [J].
BENOIST, P .
NUCLEAR SCIENCE AND ENGINEERING, 1968, 34 (03) :285-+
[3]   Models for reactor physics calculations for HTR pebble bed modular reactors [J].
Bernnat, W ;
Feltes, W .
NUCLEAR ENGINEERING AND DESIGN, 2003, 222 (2-3) :331-347
[4]   ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data [J].
Brown, D. A. ;
Chadwick, M. B. ;
Capote, R. ;
Kahler, A. C. ;
Trkov, A. ;
Herman, M. W. ;
Sonzogni, A. A. ;
Danon, Y. ;
Carlson, A. D. ;
Dunn, M. ;
Smith, D. L. ;
Hale, G. M. ;
Arbanas, G. ;
Arcilla, R. ;
Bates, C. R. ;
Beck, B. ;
Becker, B. ;
Brown, F. ;
Casperson, R. J. ;
Conlin, J. ;
Cullen, D. E. ;
Descalle, M. -A. ;
Firestone, R. ;
Gaines, T. ;
Guber, K. H. ;
Hawari, A. I. ;
Holmes, J. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Koning, A. J. ;
Kopecky, S. ;
Leal, L. ;
Lestone, J. P. ;
Lubitz, C. ;
Marquez Damian, J. I. ;
Mattoon, C. M. ;
McCutchan, E. A. ;
Mughabghab, S. ;
Navratil, P. ;
Neudecker, D. ;
Nobre, G. P. A. ;
Noguere, G. ;
Paris, M. ;
Pigni, M. T. ;
Plompen, A. J. ;
Pritychenko, B. ;
Pronyaev, V. G. ;
Roubtsov, D. ;
Rochman, D. .
NUCLEAR DATA SHEETS, 2018, 148 :1-142
[5]   TREATMENT OF THE UPPER CAVITY IN A PEBBLE-BED HIGH-TEMPERATURE GAS-COOLED REACTOR BY DIFFUSION-THEORY [J].
GERWIN, H ;
SCHERER, W .
NUCLEAR SCIENCE AND ENGINEERING, 1987, 97 (01) :9-19
[6]   NECP-MCX: A hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems [J].
He, Qingming ;
Zheng, Qi ;
Li, Jie ;
Wu, Hongchun ;
Shen, Wei ;
Cao, Liangzhi ;
Liu, Zhouyu ;
Xu, Jialong .
ANNALS OF NUCLEAR ENERGY, 2021, 151
[7]  
Hiruta H., 2008, High Temperature Reactor Technology, V48548, P561
[8]   Verification of the HTR code package (HCP) as a comprehensive HTR steady state and transient safety analysis framework [J].
Kasselmann, S. ;
Xhonneux, A. ;
Tantillo, F. ;
Trabadela, A. ;
Lambertz, D. ;
Allelein, H. -J. .
NUCLEAR ENGINEERING AND DESIGN, 2018, 329 :167-176
[9]   Status of the development of a fully integrated code system for the simulation of high temperature reactor cores [J].
Kasselmann, Stefan ;
Druska, Claudia ;
Herber, Stefan ;
Juehe, Stephan ;
Keller, Florian ;
Lambertz, Daniela ;
Li, Jingjing ;
Scholthaus, Sarah ;
Shi, Dunfu ;
Xhonneux, Andre ;
Allelein, Hans-Josef .
NUCLEAR ENGINEERING AND DESIGN, 2014, 271 :341-347
[10]  
Lee CH., 2021, Griffin Software Development Plan