CuO@N/C-ZnO nanoflowers with quantum dots derived from ZIF-8 for efficient CO2

被引:3
作者
Hou, Xiaoxiong [1 ]
Chang, Xiaobo [1 ]
Zhang, Zhilei [2 ,3 ]
Ma, Zhuangzhuang [1 ]
Zou, Peijin [1 ]
Wang, Hongqiang [4 ,5 ]
Jia, Lichao [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Natl Minist Edu, Shaanxi Engn Lab Adv Energy Technol,Sch Mat Sci &, 620 West Changan St, Xian 710119, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[5] Shaanxi Joint Lab Graphene, Xian 710072, Peoples R China
关键词
CO; 2; photoreduction; Heterojunction; Nanoflower; N/C ZnO; CuO; PHOTOCATALYTIC ACTIVITY; REDUCTION; PHOTOREDUCTION; NANOPARTICLES; FIBER; TIO2; AU;
D O I
10.1016/j.seppur.2024.129248
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this pioneering work, an innovative photocatalyst, denoted as the porous erythrocytic-like nanoflower derived from zeolitic imidazolate framework (ZIF-8) (CuO@N/C-ZnONF), has been meticulously crafted. This design integrates a porous nanosheet of nitrogen and carbon co-doped ZnO, strategically refined with CuO nanosheets (CuONS) architecture originating from ZIF-8. This innovative nanomaterial serves as a nanoreactor for converting CO2 2 into CO and CH4. 4 . The distinctive porous nanoflower structure facilitates enhanced mobility of charge carriers throughout the accessible framework, maximizes exposure of active sites, and improves the flow of charge carriers while preventing their recombination. Additionally, the porous characteristics facilitate the diffusion of reactants and products. The synthesized 10CuO/N-C-ZnONF demonstrates superior photocatalytic performance, yielding high CO and CH4 4 outputs of 286.16 and 39.74 mu mol g- 1h- h- 1 , respectively, and exhibits excellent long-term stability.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements [J].
Abdel-Mageed, Ali M. ;
Klyushin, Alexander ;
Rezvani, Azita ;
Knop-Gericke, Axel ;
Schloegl, Robert ;
Behm, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (30) :10325-10329
[2]   Removal of carbon dioxide using zeolitic imidazolate frameworks: Adsorption and conversion via catalysis [J].
Abdelhamid, Hani Nasser .
APPLIED ORGANOMETALLIC CHEMISTRY, 2022, 36 (08)
[3]   Significant CO2 photoreduction on a high-entropy oxynitride [J].
Akrami, Saeid ;
Edalati, Parisa ;
Shundo, Yu ;
Watanabe, Motonori ;
Ishihara, Tatsumi ;
Fuji, Masayoshi ;
Edalati, Kaveh .
CHEMICAL ENGINEERING JOURNAL, 2022, 449
[4]   MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications [J].
Behera, Pragyandeepti ;
Subudhi, Satyabrata ;
Tripathy, Suraj Prakash ;
Parida, Kulamani .
COORDINATION CHEMISTRY REVIEWS, 2022, 456
[5]   High-pressure proton exchange membrane water electrolysis: Current status and challenges in hydrogen production [J].
Bin, Shiyu ;
Chen, Zeyi ;
Zhu, Yanxi ;
Zhang, Yixiang ;
Xia, Yan ;
Gong, Shihao ;
Zhang, Fanhang ;
Shi, Lei ;
Duan, Xiongbo ;
Sun, Zhiqiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 67 :390-405
[6]   Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water [J].
Chen, Binling ;
Ma, Guiping ;
Kong, Dali ;
Zhu, Yanqiu ;
Xia, Yongde .
CARBON, 2015, 95 :113-124
[7]   Activation of molecular oxygen by tenorite and ascorbic acid: Generation of high-valent copper species for organic compound oxidation [J].
Chen, Na ;
Lee, Donghyun ;
Kim, Min Sik ;
Shang, Huan ;
Cao, Shiyu ;
Park, Erwin Jongwoo ;
Li, Meiqi ;
Zhang, Lizhi ;
Lee, Changha .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 440
[8]   Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors [J].
Collado, L. ;
Jana, P. ;
Sierra, B. ;
Coronado, J. M. ;
Pizarro, P. ;
Serrano, D. P. ;
de la Pena O'Shea, V. A. .
CHEMICAL ENGINEERING JOURNAL, 2013, 224 :128-135
[9]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[10]   Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst [J].
Deng, Hongzhao ;
Xu, Feiyan ;
Cheng, Bei ;
Yu, Jiaguo ;
Ho, Wingkei .
NANOSCALE, 2020, 12 (13) :7206-7213