WRKY Transcription Factor Responses and Tolerance to Abiotic Stresses in Plants

被引:10
|
作者
Ma, Ziming [1 ,2 ,3 ]
Hu, Lanjuan [1 ]
机构
[1] Jilin Univ, Coll Plant Sci, Jilin Prov Engn Lab Plant Genet Improvement, Changchun 130062, Peoples R China
[2] Max Planck Inst Mol Plant Physiol, Muehlenberg 1, D-14476 Potsdam, Germany
[3] Tech Univ Munich TUM, TUM Sch Life Sci, Plant Genet, Emil Ramann Str 4, D-85354 Freising Weihenstephan, Germany
基金
中国国家自然科学基金;
关键词
WRKY transcription factor; abiotic stress response and tolerance; target gene; plant growth and development; DNA-BINDING; DISEASE RESISTANCE; DROUGHT TOLERANCE; RICE; ARABIDOPSIS; EXPRESSION; GROWTH; ABA; STRATEGIES; FAMILY;
D O I
10.3390/ijms25136845
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses
    Pan, Lin-jie
    Jiang, Ling
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (03) : 1215 - 1225
  • [32] Sweetpotato bZIP Transcription Factor IbABF4 Confers Tolerance to Multiple Abiotic Stresses
    Wang, Wenbin
    Qiu, Xiangpo
    Yang, Yanxin
    Kim, Ho Soo
    Jia, Xiaoyun
    Yu, Huan
    Kwak, Sang-Soo
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [33] Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L.
    Hao Chen
    Yongfeng Wang
    Jiong Liu
    Tian Zhao
    Cuiling Yang
    Qunying Ding
    Yanfeng Zhang
    Jianxin Mu
    DaoJie Wang
    Planta, 2022, 255
  • [34] Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis
    Ali, Muhammad Amjad
    Azeem, Farrukh
    Nawaz, Muhammad Amjad
    Acet, Tuba
    Abbas, Amjad
    Imran, Qari Muhammad
    Shah, Kausar Hussain
    Rehman, Hafiz Mamoon
    Chung, Gyuhwa
    Yang, Seung Hwan
    Bohlmann, Holger
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 226 : 12 - 21
  • [35] Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses
    Naing, Aung Htay
    Kim, Chang Kil
    PHYSIOLOGIA PLANTARUM, 2021, 172 (03) : 1711 - 1723
  • [36] WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants
    Phukan, Ujjal J.
    Jeena, Gajendra S.
    Shukla, Rakesh K.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [37] Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants
    Yu, Yongang
    He, Lingyun
    Wu, Yanxia
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 205
  • [38] Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants
    Wang, Chang-Tao
    Ru, Jing-Na
    Liu, Yong-Wei
    Li, Meng
    Zhao, Dan
    Yang, Jun-Feng
    Fu, Jin-Dong
    Xu, Zhao-Shi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (10)
  • [39] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Xu, Q.
    Feng, W. J.
    Peng, H. R.
    Ni, Z. F.
    Sun, Q. X.
    CEREAL RESEARCH COMMUNICATIONS, 2014, 42 (01) : 48 - +
  • [40] Methylene blue increases the tolerance of tomato plants to abiotic stresses
    Aloni, B.
    Karni, L.
    Aktas, H.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2010, 85 (05): : 387 - 393