Numerical Study of Rotary Friction Welding of Automotive Components

被引:1
|
作者
Wieckowski, Wojciech [1 ]
Lacki, Piotr [1 ,2 ]
Derlatka, Anna [1 ,2 ]
Wieczorek, Pawel [1 ,3 ]
机构
[1] Czestochowa Tech Univ, Dept Technol & Automat, ul Generala Jana Henryka Dabrowskiego 69, PL-42201 Czestochowa, Poland
[2] Czestochowa Tech Univ, Dept Civil Engn, ul Generala Jana Henryka Dabrowskiego 69, PL-42201 Czestochowa, Poland
[3] Czestochowa Tech Univ, Dept Mat Engn, ul General Jana Henryka Dabrowskiego 69, PL-42201 Czestochowa, Poland
关键词
automotive; FEM; friction welding; RFW; COEFFICIENT MODEL; SIMULATION;
D O I
10.12913/22998624/188742
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of the research was to select a material from which a washer can be made, so that it can be connected to an E355 steel tube by Rotary Friction Welding (RFW). It was decided to choose the steel grade X6CrMo17-1. The numerical model of the RFW process was built using the finite element method (FEM) using the ADINA System software. The numerical model takes into account the friction coefficient with variable values depending on the temperature. Numerical simulations of the process made it possible to determine the temperature fields in the weld cross-section. For the assumed process parameters: rotational speed of 14,000 rpm, friction time of 1.5 s and friction force of 600 N, the peak temperature occurred in the middle of the friction surface at the end of the friction phase and amounted to 1050 degrees C. The results of the temperature analysis are one of the most important parameters for the implementation of subsequent calculations, such as the calculation of structural changes, hardness, residual stresses and deformations.
引用
收藏
页码:336 / 346
页数:11
相关论文
共 50 条
  • [31] Strength in Rotary Friction Welding of Five Dissimilar Nickel-Based Superalloys
    Taysom, B. S.
    Sorensen, C. D.
    Nelson, T. W.
    WELDING JOURNAL, 2021, 100 (09) : 302S - 308S
  • [32] Cellular automata simulation of dynamic recrystallization in rotary friction welding of pure copper
    Xiong, Jiangtao
    Zhou, Wei
    Wang, Limin
    Li, Jinglong
    Zhang, Fusheng
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2017, 24 (05) : 377 - 382
  • [33] Experimental and numerical study on Linear Friction Welding of AA2011 Aluminum Alloy
    Buffa, Gianluca
    Campanella, Davide
    D'annibale, Antonello
    Di Ilio, Antoniomaria
    Fratini, Livan
    MATERIAL FORMING ESAFORM 2014, 2014, 611-612 : 1511 - 1518
  • [34] Study of the effect of nano ZrO2and TiO2and rotation speed on friction behavior of rotary friction welding of HIPS and PP
    Afzali M.
    Asghari V.
    Functional Composites and Structures, 2022, 4 (01):
  • [35] Friction-reducing surface-texturing in reciprocating automotive components
    Ronen, A
    Etsion, I
    Kligerman, Y
    TRIBOLOGY TRANSACTIONS, 2001, 44 (03) : 359 - 366
  • [36] Numerical simulations of friction stir welding of dual phase titanium alloy for aerospace applications
    Nirmal, K.
    Jagadesh, T.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4702 - 4708
  • [37] Controlling martensite and pearlite formation with cooling rate and temperature control in rotary friction welding
    Taysom, Brandon Scott
    Sorensen, Carl D.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2020, 150 (150):
  • [38] A new friction stir welding based technique for corner fillet joints: experimental and numerical study
    G. Buffa
    L. Fratini
    B. Arregi
    M. Penalva
    International Journal of Material Forming, 2010, 3 : 1039 - 1042
  • [39] A NEW FRICTION STIR WELDING BASED TECHNIQUE FOR CORNER FILLET JOINTS: EXPERIMENTAL AND NUMERICAL STUDY
    Buffa, G.
    Fratini, L.
    Arregi, B.
    Penalva, M.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 : 1039 - 1042
  • [40] Joining analysis of polypropylene parts in rotary friction welding process and developing of joints profile
    Maden, Hakan
    Cetinkaya, Kerim
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (03): : 1263 - 1273