Sanziguben Polysaccharides Attenuate Renal Epithelial-Mesenchymal Transition in Diabetic Nephropathy through Nrf2-Mediated Regulation of TGF-β1/Smad7 Signaling Pathway

被引:0
|
作者
Zhang, Jianing [1 ,2 ]
Wang, Fan [1 ]
Liu, Chang [1 ]
Lu, Xiangyi [1 ]
Xu, Weiping [3 ]
Yu, Yang [1 ]
Bai, Shasha [1 ]
Chen, Zhilian [4 ]
机构
[1] Guangzhou Univ Chinese Med, Sch Pharmaceut Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Yuncheng Vocat Nursing Coll, Dept Clin Med, Yuncheng 044000, Shanxi, Peoples R China
[3] Guangdong Prov Peoples Hosp, Guangzhou 519041, Guangdong, Peoples R China
[4] Guangzhou Univ Tradit Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
TGF-BETA; STRUCTURAL-CHARACTERIZATION; OXIDATIVE STRESS; FIBROSIS; INFLAMMATION; MECHANISMS; EXPRESSION; RECEPTOR;
D O I
10.1155/2024/3475485
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Context. Sanziguben polysaccharides (SZP) have renal protection properties and can reduce renal fibrosis in diabetic nephropathy (DM). However, the mechanism of SZP's renal protection effect is not yet clear. Objectives. Our study intended to clarify the mechanism of SZP's renal protection effect in DM. Materials and Methods. In this study, streptozotocin-induced C57BL/6J diabetic nephropathy mice and high glucose combined with TGF-beta 1-induced EMT in HK-2 cells were used to investigate the effect of Sanziguben polysaccharides. ShRNA-constructed Nrf2 knockdown HK-2 cells were used to explore the role of Nrf2 in Sanziguben polysaccharides inhibiting epithelial-mesenchymal transition. Results. In vivo, the results showed that Sanziguben polysaccharides improved renal epithelial-mesenchymal transition and oxidative stress, and SZP was shown to activate the renal Nrf2, increase Smad7, and inhibit the expression of TGF-beta 1 (1.05- to 0.71-fold, 1.66- to 0.40-fold and 0.96- to 1.31-fold, respectively). In vitro, SZP ameliorated HK-2 cell epithelial-mesenchymal transition induced by HG combined with TGF-beta 1, increased the expression of Nrf2 and Smad7, and suppressed the expression of TGF-beta 1 (1.50- to 1.12-fold, 1.49- to 1.07-fold, and 0.94- to 1.38-fold, respectively). In addition, the above effects of Sanziguben polysaccharides on Nrf2 knockdown HK-2 cells were weakened. Conclusions. The findings suggest that Sanziguben polysaccharides may improve renal epithelial-mesenchymal transition in diabetic nephropathy through Nrf2-mediated regulation of TGF-beta 1/Smad7 signaling pathway.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] PAK4 enhances TGF-β1-induced epithelial-mesenchymal transition through activating β-catenin signaling pathway in renal tubular epithelial cells
    Fan, Yan
    Wang, Xv
    Li, Yang
    Zhao, Xing
    Zhou, Jieqing
    Ma, Xiaoxue
    An, Dong
    Jiang, Hong
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2018, 11 (06): : 3026 - 3035
  • [32] Sparganii Rhizoma alleviates pulmonary fibrosis by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition mediated by TGF-β1/ Smad2/3 pathway
    Liu, Jing
    Gao, Dongyang
    Ding, Qi
    Zhang, Binbin
    Zhu, Wenxiang
    Shi, Yuanyuan
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 309
  • [33] Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-β1/Smad signaling pathway
    Jiang, Yang
    Zhou, Jinpeng
    Hou, Dianqi
    Luo, Peng
    Gao, Huiling
    Ma, Yanju
    Chen, Yin-Sheng
    Li, Long
    Zou, Dan
    Zhang, Haiying
    Zhang, Ye
    Jing, Zhitao
    JOURNAL OF PATHOLOGY, 2019, 249 (01) : 26 - 38
  • [34] MFAP2 promotes epithelial-mesenchymal transition in gastric cancer cells by activating TGF-β/SMAD2/3 signaling pathway
    Wang, Jian-Kai
    Wang, Wen-Juan
    Cal, Hong-Yi
    Du, Bin-Bin
    Mai, Ping
    Zhang, Li-Juan
    Ma, Wen
    Hu, Yong-Guo
    Feng, Shi-Fang
    Miao, Guo-Ying
    ONCOTARGETS AND THERAPY, 2018, 11 : 4001 - 4017
  • [35] Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway
    Fan, Qiong
    Qiu, Met-Ting
    Zhu, Zhu
    Zhou, Jin-Hua
    Chen, Limo
    Zhou, Ye
    Gu, Wei
    Wang, Li-Hua
    L, Zhu-Nan, I
    Xu, Ying
    Cheng, Wei-Wei
    Wu, Dan
    Bao, Wei
    ONCOLOGY REPORTS, 2015, 34 (04) : 1787 - 1794
  • [36] AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway
    Deng, Liming
    Bao, Wenming
    Zhang, Baofu
    Zhang, Sina
    Chen, Ziyan
    Zhu, Xuewen
    He, Bangjie
    Wu, Lijun
    Chen, Xiaohu
    Deng, Tuo
    Chen, Bo
    Yu, Zhengping
    Wang, Yi
    Chen, Gang
    CELL DEATH & DISEASE, 2023, 14 (09)
  • [37] Calreticulin regulates TGF-β1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling
    Wu, Yanjiao
    Xu, Xiaoli
    Ma, Lunkun
    Yi, Qian
    Sun, Weichao
    Tang, Liling
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2017, 90 : 103 - 113
  • [38] Stachydrine inhibits TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells through the TGF-β/Smad and PI3K/Akt/mTOR signaling pathways
    Chen, Xiangni
    Yan, Ning
    ANTI-CANCER DRUGS, 2021, 32 (08) : 786 - 792
  • [39] MiR-32-5p knockdown inhibits epithelial to mesenchymal transition and renal fibrosis by targeting SMAD7 in diabetic nephropathy
    Wang, H-J
    Liu, H.
    Lin, Y-H
    Zhang, S-J
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (04) : 587 - 595
  • [40] Qinggan Huoxue Recipe suppresses epithelial-to-mesenchymal transition in alcoholic liver fibrosis through TGF-β1/Smad signaling pathway
    Wu, Tao
    Chen, Jun-Ming
    Xiao, Tie-Gang
    Shu, Xiang-Bing
    Xu, Han-Chen
    Yang, Li-Li
    Xing, Lian-Jun
    Zheng, Pei-Yong
    Ji, Guang
    WORLD JOURNAL OF GASTROENTEROLOGY, 2016, 22 (19) : 4695 - 4706