Neuron circuit made of a single locally-active memristor

被引:0
作者
Yan, Yan [1 ]
Jin, Peipei [1 ]
Shi, Jiaping [1 ]
Wang, Guangyi [1 ,2 ]
Liang, Yan [1 ]
Dong, Yujiao [1 ]
Chen, Long [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Modern Circuit & Intelligent Informat, Hangzhou, Zhejiang, Peoples R China
[2] Qilu Inst Technol, Jinan, Shandong, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2024年
基金
中国国家自然科学基金;
关键词
Memristor; neuron circuit; local activity; edge of chaos; biphasic action potentials;
D O I
10.1142/S0217984925500423
中图分类号
O59 [应用物理学];
学科分类号
摘要
Neuromorphic computing, inspired by the human brain's architecture, is expected to break the physical limits of transistors and von Neumann bottleneck. The multiple internal state variables of higher-order memristors (second-order or above) possess dynamic complexity and adaptability, enabling them to mimick the characteristics of biological neurons, which are very important building blocks for neuromorphic computing. This paper presents a simple neuron circuit containing a single second-order current-controlled locally-active memristor (LAM). The pinched hysteresis loop and DC V-I curve of the proposed second-order LAM show good odd symmetry. Applying small signal analysis method, we obtain the small-signal equivalent circuit of the neuron circuit, showing a LC parallel structure and an edge of chaos kernel in its locally-active domain. Also, we draw a parameter classification of the neuron circuit, showing four symmetrical edge of chaos domains, which plays an important role in biphasic action potentials. Finally, we demonstrate that the simple neuron circuit can produce monophasic action potentials, biphasic action potentials and co-existing neuromorphic phenomena via subcritical Hopf bifurcation with different input, verifying the simple circuit is suitable as artificial neurons.
引用
收藏
页数:19
相关论文
共 29 条
  • [1] Emerging higher-order memristors for bio- realistic neuromorphic computing: A review
    Chaurasiya, Rajneesh
    Shih, Li-Chung
    Chen, Kuan-Ting
    Chen, Jen-Sue
    [J]. MATERIALS TODAY, 2023, 68 : 356 - 376
  • [2] Hodgkin-Huxley equations implies Edge of Chaos Kernel
    Chua, Leon
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2022, 61 (SM)
  • [3] NEURONS ARE POISED NEAR THE EDGE OF CHAOS
    Chua, Leon
    Sbitnev, Valery
    Kim, Hyongsuk
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [4] Local activity is the origin of complexity
    Chua, LO
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11): : 3435 - 3456
  • [5] Poor Man's Memristor: Chua Corsage Memristor
    Jin, Peipei
    Wang, Guangyi
    Liang, Yan
    Chen, Long
    Iu, Herbert Ho-Ching
    Chua, Leon O.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (08) : 3139 - 3143
  • [6] Biphasic action potential and chaos in a symmetrical Chua Corsage Memristor-based circuit
    Jin, Peipei
    Wang, Guangyi
    Chen, Long
    [J]. CHAOS, 2023, 33 (02)
  • [7] Neuromorphic Dynamics of Chua Corsage Memristor
    Jin, Peipei
    Wang, Guangyi
    Liang, Yan
    Iu, Herbert Ho-Ching
    Chua, Leon O.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (11) : 4419 - 4432
  • [8] The building blocks of a brain-inspired computer
    Kendall, Jack D.
    Kumar, Suhas
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (01)
  • [9] Experimental Demonstration of a Second-Order Memristor and Its Ability to Biorealistically Implement Synaptic Plasticity
    Kim, Sungho
    Du, Chao
    Sheridan, Patrick
    Ma, Wen
    Choi, ShinHyun
    Lu, Wei D.
    [J]. NANO LETTERS, 2015, 15 (03) : 2203 - 2211
  • [10] Dynamical memristors for higher-complexity neuromorphic computing
    Kumar, Suhas
    Wang, Xinxin
    Strachan, John Paul
    Yang, Yuchao
    Lu, Wei D.
    [J]. NATURE REVIEWS MATERIALS, 2022, 7 (07) : 575 - 591