Bimetallic metal-organic framework-derived porous one-dimensional carbon materials for electrochemical sensing of dopamine

被引:13
|
作者
Chowdhury, Silvia [1 ]
Nugraha, Asep Sugih [1 ]
O'May, Riley [1 ]
Wang, Xiaohan [1 ]
Cheng, Ping [1 ]
Xin, Ruijing [1 ]
Osman, Sameh M. [2 ]
Hossain, Md Shahriar [1 ,3 ]
Yamauchi, Yusuke [1 ,4 ,5 ]
Masud, Mostafa Kamal [1 ]
Kaneti, Yusuf Valentino [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, St Lucia, Qld 4072, Australia
[2] King Saud Univ, Coll Sci, Chem Dept, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Queensland, Sch Mech & Min Engn, Fac Engn Architecture & Informat Technol EAIT, Brisbane, Qld 4072, Australia
[4] Nagoya Univ, Grad Sch Engn, Dept Mat Proc Engn, Nagoya 4648603, Japan
[5] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
关键词
Metal-organic frameworks; Porous carbon; Dopamine; Electrochemical sensing; Biosensors; Biomolecules; CU-BTC; GRAPHENE OXIDE; ANODE MATERIAL; SENSOR; PERFORMANCE; CO; PLATFORM; CARBONIZATION; COMPOSITE; BEHAVIOR;
D O I
10.1016/j.cej.2024.152124
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we report the preparation of one-dimensional (1D) bimetallic zinc-cobalt BTC (BTC = 1,3,5-benzenetricarboxylate) metal-organic frameworks (MOFs) with varying Zn/Co ratios and their conversion to hierarchical porous Co/C hybrids with a trace amount of Zn (<0.05 wt%). The crystallinity, surface area, and degree of graphitization of the resulting Co/C hybrid are governed by the Zn/Co ratio of the parent Zn-Co BTC MOF. The Co/C product derived from the Zn-rich Zn-Co BTC MOF (ZC31-BTC with a Zn/Co precursor ratio of 3:1) shows higher surface area and more amorphous structure than that derived from the Co-rich Zn-Co BTC MOF (ZC13-BTC with a Zn/Co precursor ratio of 1:3). When used for the electrochemical sensing of dopamine (DA), the glassy carbon electrode (GCE) modified with ZC31-BTC700 degrees C (ZC31-BTC carbonized at 700 degrees C) shows a sensitivity of 0.0995 nA nM(-1) cm(-2), a wide linear range of 0.1-500 <mu>M, and a low limit of detection (LoD) of 0.04 mu M (signal-to-noise ratio (S/N) = 3). The superior DA sensing performance of ZC31-BTC700 degrees C is attributed to its high density of defects (evidenced by the high I-D/I-G ratio), rich mesopores (including small (<5 nm) and large mesopores (>5 nm)), and high surface area, leading to improved ion/electron transfer (based on the EIS analysis), and more electrochemically active sites (confirmed by ECSA measurements) to promote a greater oxidation of DA molecules. The anti-interference test of this ZC31-BTC700 degrees C-modified GCE (ZC31-BTC700 degrees C/GCE) indicates its high selectivity toward DA even in the presence of interferents, such as glucose, ascorbic acid, and uric acid. Moreover, the stability test indicates the good retainment of the current response of ZC31-BTC700 degrees C/GCE toward DA over a period of 2 weeks.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Metal-organic frameworks and metal-organic framework-derived materials for denitrogenation of liquid fuel via adsorption and catalysis
    Mondol, Md. Mahmudul Hassan
    Ahmed, Imteaz
    Lee, Hye Jin
    Morsali, Ali
    Jhung, Sung Hwa
    COORDINATION CHEMISTRY REVIEWS, 2023, 495
  • [42] Metal -Organic Framework-Derived Hollow Carbon Materials for Electrochemical Energy Storage and Oxygen Reduction Reaction
    Liu Hu
    Yang Dong-Hui
    Wang Xu-Yun
    Han Bao-Hang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (11) : 1921 - 1933
  • [43] A Versatile Route toward the Electromagnetic Functionalization of Metal-Organic Framework-Derived Three-Dimensional Nanoporous Carbon Composites
    Liu, Wei
    Liu, Lei
    Yang, Zhihong
    Xu, Junjie
    Hou, Yanglong
    Ji, Guangbin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (10) : 8965 - 8975
  • [44] Two-dimensional -conjugated metal-organic framework with high electrical conductivity for electrochemical sensing
    Wu, Fei
    Fang, Wei
    Yang, Xueyuan
    Xu, Jiaoyan
    Xia, Jianfei
    Wang, Zonghua
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2019, 66 (05) : 522 - 528
  • [45] Nanoporous carbon nanowires derived from one-dimensional metal-organic framework core-shell hybrids for enhanced electrochemical energy storage
    Cui, Jiewu
    Zhang, Yongli
    Cao, Zhongnan
    Yu, Dongbo
    Wang, Yan
    Liu, Jiaqin
    Zhang, Jingcheng
    Zhang, Yong
    Wu, Yucheng
    APPLIED SURFACE SCIENCE, 2022, 576
  • [46] Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption
    Zhang, Feng
    Jia, Zirui
    Zhou, Jixi
    Liu, Jinkun
    Wu, Guanglei
    Yin, Pengfei
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [47] Metal-Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media
    Fang, Xinzuo
    Jiao, Long
    Yu, Shu-Hong
    Jiang, Hai-Long
    CHEMSUSCHEM, 2017, 10 (15) : 3019 - 3024
  • [48] An efficient catalytic reduction of nitroarenes over metal-organic framework-derived magnetic graphitic carbon nitride nanosheet
    Malmir, Masoume
    Heravi, Majid M.
    Jahani, Ghazaleh
    APPLIED ORGANOMETALLIC CHEMISTRY, 2023, 37 (12)
  • [49] Metal-organic framework-derived ZnO hollow nanocages functionalized with nanoscale Ag catalysts for enhanced ethanol sensing properties
    Zhang, Jinniu
    Lu, Huan
    Zhang, Lizhai
    Leng, Deying
    Zhang, Yuanyi
    Wang, Wei
    Gao, Ying
    Lu, Hongbing
    Gao, Jianzhi
    Zhu, Gangqiang
    Yang, Zhibo
    Wang, Chunlan
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 291 : 458 - 469
  • [50] Metal-organic framework transistors for dopamine sensing†
    Song, Jiajun
    Zheng, Jianzhong
    Yang, Anneng
    Liu, Hong
    Zhao, Zeyu
    Wang, Naixiang
    Yan, Feng
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (08) : 3422 - 3427