Higher integrability for weak solutions to parabolic multi-phase equations

被引:2
作者
Kim, Bogi [1 ]
Oh, Jehan [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Degenerate parabolic equations; Multi-phase problems; Weak solution; Higher integrability; Intrinsic cylinders; OMEGA-MINIMIZERS; REGULARITY; FUNCTIONALS; SYSTEMS;
D O I
10.1016/j.jde.2024.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a local higher integrability result for the gradient of a weak solution to a parabolic multi-phase equation. To achieve this, we prove parabolic Poincar & eacute; type inequalities and reverse H & ouml;lder type inequalities for the gradient of a weak solution in each of difference types of intrinsic cylinders. In particular, we formulate a delicate plan of alternatives and stopping time arguments to address the presence of two different transitions. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:223 / 298
页数:76
相关论文
共 33 条
[1]   Gradient estimates for multi-phase problems [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
[2]   Calderon-Zygmund estimates for generalized double phase problems [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
[3]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[4]   GRADIENT ESTIMATES OF ω-MINIMIZERS TO DOUBLE PHASE VARIATIONAL PROBLEMS WITH VARIABLE EXPONENTS [J].
Byun, Sun-Sig ;
Lee, Ho-Sik .
QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04) :1191-1221
[5]   Calderon-Zygmund estimates for elliptic double phase problems with variable exponents [J].
Byun, Sun-Sig ;
Lee, Ho-Sik .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[6]   REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS [J].
Byun, Sun-Sig ;
Oh, Jehan .
ANALYSIS & PDE, 2020, 13 (05) :1269-1300
[7]   Global gradient estimates for non-uniformly elliptic equations [J].
Byun, Sun-Sig ;
Oh, Jehan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[8]   Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev's phenomenon [J].
Chlebicka, Iwona ;
Gwiazda, Piotr ;
Zatorska-Goldstein, Anna .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (05) :1431-1465
[9]   Calderon-Zygmund estimates and non-uniformly elliptic operators [J].
Colombo, Maria ;
Mingione, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) :1416-1478
[10]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273