Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
|
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Define the Lyapunov Exponents for ?-Fractional Differential System
    N'Gbo, N'Gbo
    Tang, Jianhua
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (05):
  • [42] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [43] Fractional-order input-to-state stability and its converse Lyapunov theorem
    Guo, Tong
    Wei, Yiheng
    Zhang, Luyao
    Mao, Yao
    Zhou, Xi
    Cao, Jinde
    JOURNAL OF THE FRANKLIN INSTITUTE, 2025, 362 (01)
  • [44] Stabilization of a class of fractional-order nonautonomous systems using quadratic Lyapunov functions
    Quan Xu
    Shengxian Zhuang
    Xiaohui Xu
    Chang Che
    Yankun Xia
    Advances in Difference Equations, 2018
  • [45] Stabilization of a class of fractional-order nonautonomous systems using quadratic Lyapunov functions
    Xu, Quan
    Zhuang, Shengxian
    Xu, Xiaohui
    Che, Chang
    Xia, Yankun
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [46] Lyapunov’s first and second instability theorems for Caputo fractional-order systems
    Cong Wu
    Nonlinear Dynamics, 2022, 109 : 1923 - 1928
  • [47] Lyapunov's first and second instability theorems for Caputo fractional-order systems
    Wu, Cong
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1923 - 1928
  • [48] A new Lyapunov stability analysis of fractional-order systems with nonsingular kernel derivative
    Salahshour, Soheil
    Ahmadian, Ali
    Salimi, Mehdi
    Pansera, Bruno Antonio
    Ferrara, Massimiliano
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2985 - 2990
  • [49] Tracking control for fractional-order uncertain systems based on the indirect Lyapunov method
    Liu, Ruijuan
    Qin, Zhiqiang
    Nie, Zhuoyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2015 - 2019
  • [50] Stability analysis for nonlinear fractional-order systems based on comparison principle
    Zhiliang Wang
    Dongsheng Yang
    Tiedong Ma
    Ning Sun
    Nonlinear Dynamics, 2014, 75 : 387 - 402