Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 12期
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics
    Silva-Juarez, Alejandro
    Tlelo-Cuautle, Esteban
    Gerardo de la Fraga, Luis
    Li, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 394
  • [32] On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization
    Mahmoud, Gamal M.
    Ahmed, Mansour E.
    Abed-Elhameed, Tarek M.
    OPTIK, 2017, 130 : 398 - 406
  • [33] The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order e ? (1,2)
    Zhang, Xianmin
    Liu, Zuohua
    Yang, Shixian
    Peng, Zuming
    He, Yali
    Wei, Liran
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [34] On the concept of general solution for impulsive differential equations of fractional-order q∈(1,2)
    Zhang, Xianmin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 103 - 120
  • [35] Solution of a new high-performance fractional-order Lorenz system and its dynamics analysis
    Yujuan Gu
    Guodong Li
    Xiangliang Xu
    Xiaoming Song
    Huiyan Zhong
    Nonlinear Dynamics, 2023, 111 : 7469 - 7493
  • [36] Solution of a new high-performance fractional-order Lorenz system and its dynamics analysis
    Gu, Yujuan
    Li, Guodong
    Xu, Xiangliang
    Song, Xiaoming
    Zhong, Huiyan
    NONLINEAR DYNAMICS, 2023, 111 (08) : 7469 - 7493
  • [37] On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)
    Zhang, Xianmin
    Shu, Tong
    Liu, Zuohua
    Ding, Wenbin
    Peng, Hui
    He, Jun
    OPEN MATHEMATICS, 2016, 14 : 452 - 473
  • [38] Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling
    Shih-Yu Li
    Sheng-Chieh Huang
    Cheng-Hsiung Yang
    Zheng-Ming Ge
    Nonlinear Dynamics, 2012, 69 : 805 - 816
  • [39] Enhancing the trustworthiness of chaos and synchronization of chaotic satellite model: a practice of discrete fractional-order approaches
    Rashid, Saima
    Hamidi, Sher Zaman
    Akram, Saima
    Alosaimi, Moataz
    Chu, Yu-Ming
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling
    Li, Shih-Yu
    Huang, Sheng-Chieh
    Yang, Cheng-Hsiung
    Ge, Zheng-Ming
    NONLINEAR DYNAMICS, 2012, 69 (03) : 805 - 816