Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
|
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Extremal Lyapunov exponents: an invariance principle and applications
    Artur Avila
    Marcelo Viana
    Inventiones mathematicae, 2010, 181 : 115 - 178
  • [32] Extremal Lyapunov exponents: an invariance principle and applications
    Avila, Artur
    Viana, Marcelo
    INVENTIONES MATHEMATICAE, 2010, 181 (01) : 115 - 178
  • [33] Fractional-order rumor propagation model with memory effect
    Gao, Xu
    Liu, Fengming
    Liu, Chang
    SOCIAL NETWORK ANALYSIS AND MINING, 2022, 12 (01)
  • [34] A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators
    Zhang, Zhe
    Ai, Zhaoyang
    Zhang, Jing
    Cheng, Fanyong
    Liu, Feng
    Ding, Can
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [35] Fractional-order rumor propagation model with memory effect
    Xu Gao
    Fengming Liu
    Chang Liu
    Social Network Analysis and Mining, 2022, 12
  • [36] Stability of short memory fractional-order hybrid systems
    Feng, Zaiyong
    Mao, Jun
    Xiang, Zhengrong
    Wang, Xuhuan
    CHINESE JOURNAL OF PHYSICS, 2024, 90 : 1057 - 1066
  • [37] On the bound of the Lyapunov exponents for the fractional differential systems
    Li, Changpin
    Gong, Ziqing
    Qian, Deliang
    Chen, YangQuan
    CHAOS, 2010, 20 (01)
  • [38] Lyapunov Exponents of a Discontinuous 4D Hyperchaotic System of Integer or Fractional Order
    Danca, Marius-F.
    ENTROPY, 2018, 20 (05)
  • [39] Lyapunov exponents spectrum estimation of fractional order nonlinear systems using Cloned Dynamics
    Fischer, C.
    Zourmba, K.
    Mohamadou, A.
    APPLIED NUMERICAL MATHEMATICS, 2020, 154 : 187 - 204
  • [40] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818