Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
|
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Lyapunov functions for fractional-order systems in biology: Methods and applications
    Boukhouima, Adnane
    Hattaf, Khalid
    Lotfi, El Mehdi
    Mahrouf, Marouane
    Torres, Delfim F. M.
    Yousfi, Noura
    CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [22] Stability of fractional-order nonlinear systems by Lyapunov direct method
    Tuan, Hoang T.
    Hieu Trinh
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (17): : 2417 - 2422
  • [23] Lyapunov Stability of Fractional-order Nonlinear Systems: A Distributed-order Approach
    Li, Yan
    Chen, YangQuan
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [24] Oscillators Based on Fractional-Order Memory Elements
    Petras, Ivo
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [25] A MATLAB Toolbox for Multivariable Linear Fractional-order Control Systems
    Xue, Dingyu
    Li, Tingxue
    Liu, Lu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1894 - 1899
  • [26] Stability Analysis of Fractional Chaotic and Fractional-Order Hyperchain Systems Using Lyapunov Functions
    Khalid, Thwiba A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [27] Controlling fractional-order new chaotic system based on Lyapunov equation
    Xu Zhe
    Liu Chong-Xing
    Yang Tao
    ACTA PHYSICA SINICA, 2010, 59 (03) : 1524 - 1531
  • [28] Stability and stabilization of nonlinear fractional-order systems by Lyapunov direct approach
    Zhang, XueFeng
    Zou, Qi
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 457 - 461
  • [29] Volterra-type Lyapunov functions for fractional-order epidemic systems
    Vargas-De-Leon, Cruz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) : 75 - 85
  • [30] Fractional-Order LCL Filters: Principle, Frequency Characteristics, and Their Analysis
    Xu, Junhua
    Zeng, Ermeng
    Li, Xiaocong
    He, Guopeng
    Liu, Weixun
    Meng, Xuanren
    FRACTAL AND FRACTIONAL, 2024, 8 (01)