Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 12期
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mathematical modeling and analysis of fractional-order brushless DC motor
    Zain Ul Abadin Zafar
    Nigar Ali
    Cemil Tunç
    Advances in Difference Equations, 2021
  • [22] Mathematical modeling and analysis of fractional-order brushless DC motor
    Zafar, Zain Ul Abadin
    Ali, Nigar
    Tunc, Cemil
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [23] Modified generalized projective synchronization of fractional-order chaotic Lu systems
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [24] Fractional-order singular logistic map: Stability, bifurcation and chaos analysis
    Nosrati, Komeil
    Shafiee, Masoud
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 224 - 238
  • [25] Modified generalized projective synchronization of fractional-order chaotic Lü systems
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    Advances in Difference Equations, 2013
  • [26] Stability analysis and robust synchronisation of fractional-order modified Colpitts oscillators
    Alain, Kammogne Soup Tewa
    Azar, Ahmad Taher
    Kengne, Romanic
    Bertrand, Fotsin Hilaire
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2020, 14 (01) : 52 - 79
  • [27] Chaos in fractional-order Genesio-Tesi system and its synchronization
    Faieghi, Mohammad Reza
    Delavari, Hadi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 731 - 741
  • [28] Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects
    Echenausia-Monroy, Jose Luis
    Quezada-Tellez, Luis Alberto
    Gilardi-Velazquez, Hector Eduardo
    Ruiz-Martinez, Omar Fernando
    Heras-Sanchez, Maria del Carmen
    Lozano-Rizk, Jose E.
    Cuesta-Garcia, Jose Ricardo
    Marquez-Martinez, Luis Alejandro
    Rivera-Rodriguez, Raul
    Ramirez, Jonatan Pena
    Alvarez, Joaquin
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [29] A fractional-order hyper-chaotic system and its circuit implementation
    Xue, Wei
    Xiao, Hui
    Xu, Jinkang
    Jia, Hongyan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2015), 2015, : 187 - 190
  • [30] Solution Analysis of the fractional-order Lu hyperchaotic system Based on Adomian Decomposition
    Lei Tengfei
    Fu Haiyan
    Dai Wenpeng
    Zang Hong-yan
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3800 - 3803