Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
|
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Matlab Code for Lyapunov Exponents of Fractional-Order Systems
    Danca, Marius-F.
    Kuznetsov, Nikolay
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [2] Matlab Code for Lyapunov Exponents of Fractional-Order Systems, Part II: The Noncommensurate Case
    Danca, Marius-F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (12):
  • [3] Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle
    Li, Hang
    Shen, Yongjun
    Han, Yanjun
    Dong, Jinlu
    Li, Jian
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [4] Fractional-order PWC systems without zero Lyapunov exponents
    Danca, Marius-F.
    Feckan, Michal
    Kuznetsov, Nikolay V.
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2018, 92 (03) : 1061 - 1078
  • [5] Fractional-order PWC systems without zero Lyapunov exponents
    Marius-F. Danca
    Michal Fečkan
    Nikolay V. Kuznetsov
    Guanrong Chen
    Nonlinear Dynamics, 2018, 92 : 1061 - 1078
  • [6] A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems
    Caponetto, Riccardo
    Fazzino, Stefano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) : 22 - 27
  • [9] Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems
    Li, Ruihong
    Chen, Weisheng
    NONLINEAR DYNAMICS, 2014, 76 (01) : 785 - 795
  • [10] An Improved Algorithm for Lyapunov Exponents of Fractional- order System
    Li Qingdu
    Chen Shu
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 300 - 303