Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order

被引:2
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Bebes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Math Inst Slovak Acad Sci, Bratislava, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 12期
关键词
Impulsive fractional differential equations; memory principle; fixed lower limit; changing lower limit; Lyapunov exponent; MATLAB code;
D O I
10.1142/S0218127424501566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo's derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the MATLAB code for Lyapunov exponents of fractional-order systems [Danca & Kuznetsov, 2018] is analyzed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle
    Li, Hang
    Shen, Yongjun
    Han, Yanjun
    Dong, Jinlu
    Li, Jian
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [2] Fractional-order PWC systems without zero Lyapunov exponents
    Danca, Marius-F.
    Feckan, Michal
    Kuznetsov, Nikolay V.
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2018, 92 (03) : 1061 - 1078
  • [3] Fractional-order PWC systems without zero Lyapunov exponents
    Marius-F. Danca
    Michal Fečkan
    Nikolay V. Kuznetsov
    Guanrong Chen
    Nonlinear Dynamics, 2018, 92 : 1061 - 1078
  • [5] Lyapunov exponents of a class of piecewise continuous systems of fractional order
    Danca, Marius-F.
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 227 - 237
  • [6] Lyapunov exponents of a class of piecewise continuous systems of fractional order
    Marius-F. Danca
    Nonlinear Dynamics, 2015, 81 : 227 - 237
  • [7] Extremal Lyapunov exponents: an invariance principle and applications
    Artur Avila
    Marcelo Viana
    Inventiones mathematicae, 2010, 181 : 115 - 178
  • [8] Lyapunov Exponents of a Discontinuous 4D Hyperchaotic System of Integer or Fractional Order
    Danca, Marius-F.
    ENTROPY, 2018, 20 (05)
  • [9] Lyapunov exponents of PDEs driven by fractional noise with Markovian switching
    Fan, Xiliang
    Yuan, Chenggui
    STATISTICS & PROBABILITY LETTERS, 2016, 110 : 39 - 50
  • [10] Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps
    Wu, Guo-Cheng
    Baleanu, Dumitru
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 95 - 100