Characterization of Below-Bandgap Absorption in Type II GaSb Quantum Dots in GaAs Solar Cells

被引:0
作者
James, Juanita Saroj [1 ]
Fujita, Hiromi [2 ]
Carrington, Peter J. [3 ]
Marshall, Andrew R. J. [4 ]
Krier, Susan [4 ]
Krier, Anthony [4 ]
机构
[1] Womens Christian Coll, Dept Phys, Chennai 600006, India
[2] Asahi Kasei Corp, 2 1 Samejima, Fuji, Shizuoka 4168501, Japan
[3] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[4] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
来源
PHYSICS | 2024年 / 6卷 / 03期
关键词
solar cells; quantum dots; molecular beam epitaxy; gallium antimonide; photocurrent; delta doping; photoresponse; Urbach tail; below-bandgap absorption; DYNAMICS;
D O I
10.3390/physics6030060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approach to derive the below-bandgap absorption in GaSb/GaAs self-assembled quantum dot devices using room-temperature external quantum efficiency measurement results is presented. Devices with five layers of delta-doped quantum dots placed in the intrinsic, n- and p-regions of a GaAs solar cell are studied. The importance of incorporating an extended Urbach tail absorption in analyzing the absorption strength of quantum dots and the transition states is demonstrated. The theoretically integrated absorbance via quantum dot ground states is calculated as 1.04 x 1015 cm-1s-1, which is in reasonable agreement with the experimentally derived value 8.1 x 1015 cm-1s-1. The wetting layer and quantum dot absorption contributions are separated from the tail absorption and their transition energies are calculated. Using these transition energies and the GaAs energy gap of 1.42 eV, the heavy hole confinement energies for the quantum dots (320 meV) and for the wetting layer (120 meV) are estimated.
引用
收藏
页码:990 / 998
页数:9
相关论文
共 19 条
  • [1] Optical investigation of type IIGaSb/GaAs self-assembled quantum dots
    Alonso-Alvarez, Diego
    Alen, Benito
    Garcia, Jorge M.
    Ripalda, Jose M.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (26)
  • [2] Delta doping and positioning effects of type II GaSb quantum dots in GaAs solar cell
    Asirvatham, Juanita Saroj James
    Fujita, Hiromi
    Fernández-Delgado, N.
    Herrera, M.
    Molina, S.I.
    Marshall, Andrew R. J.
    Krier, Anthony
    [J]. Energy Materials: Materials Science and Engineering for Energy Systems, 2015, 10 (04): : 512 - 516
  • [3] Bimberg D., 2001, QUANTUM DOT HETEROST
  • [4] Femtosecond dynamics and absorbance of self-organized InAs quantum dots emitting near 1.3 μm at room temperature
    Birkedal, D
    Bloch, J
    Shah, J
    Pfeiffer, LN
    West, K
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (14) : 2201 - 2203
  • [5] Type II GaSb/GaAs Quantum Rings with Extended Photoresponse for Efficient Solar Cells
    Carrington, P. J.
    Montesdeoca, D.
    Fujita, H.
    James, J.
    Wagener, M. C.
    Botha, J. R.
    Marshall, A. R. J.
    Krier, A.
    [J]. NEXT GENERATION TECHNOLOGIES FOR SOLAR ENERGY CONVERSION VII, 2016, 9937
  • [6] Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells
    Carrington, P. J.
    Wagener, M. C.
    Botha, J. R.
    Sanchez, A. M.
    Krier, A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (23)
  • [7] Cnovas E., 2008, The Compiled State-of-the-Art of PV Solar Technology and Deployment. 23rd European Photovoltaic Solar Energy Conference, P298
  • [8] 450 meV hole localization in GaSb/GaAs quantum dots
    Geller, M
    Kapteyn, C
    Müller-Kirsch, L
    Heitz, R
    Bimberg, D
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (16) : 2706 - 2708
  • [9] Radiative lifetimes in undoped and p-doped InAs/GaAs quantum dots
    Harbord, Edmund
    Spencer, Peter
    Clarke, Edmund
    Murray, Ray
    [J]. PHYSICAL REVIEW B, 2009, 80 (19)
  • [10] Carrier dynamics in type-II GaSb/GaAs quantum dots
    Hatami, F
    Grundmann, M
    Ledentsov, NN
    Heinrichsdorff, F
    Heitz, R
    Bohrer, J
    Bimberg, D
    Ruvimov, SS
    Werner, P
    Ustinov, VM
    Kop'ev, PS
    Alferov, ZI
    [J]. PHYSICAL REVIEW B, 1998, 57 (08): : 4635 - 4641