New spence difference sets

被引:0
作者
Davis, James A. [1 ]
Polhill, John [2 ]
Smith, Ken [3 ]
Swartz, Eric [3 ]
Webster, Jordan [4 ]
机构
[1] Univ Richmond, Dept Math & Stat, Richmond, VA 23173 USA
[2] Commonwealth Univ, Dept Math Comp Sci & Digital Forens, Bloomsburg, PA 17815 USA
[3] William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Mid Michigan Coll, Harrison, MI 48625 USA
关键词
Difference sets; Relative difference sets; Spence; Nonabelian groups;
D O I
10.1007/s10623-024-01446-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spence [9] constructed 3d+1(3d+1-1)2,3d(3d+1+1)2,3d(3d+1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{3<^>{d+1}(3<^>{d+1}-1)}{2}, \frac{3<^>d(3<^>{d+1}+1)}{2}, \frac{3<^>d(3<^>d+1)}{2}\right) $$\end{document}-difference sets in groups KxC3d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \times C_3<^>{d+1}$$\end{document} for d any positive integer and K any group of order 3d+1-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3<^>{d+1}-1}{2}$$\end{document}. Smith and Webster [8] have exhaustively studied the d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} case without requiring that the group have the form listed above and found many constructions. Among these, one intriguing example constructs Spence difference sets in A4xC3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_4 \times C_3$$\end{document} by using (3, 3, 3, 1)-relative difference sets in a non-normal subgroup isomorphic to C32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3<^>2$$\end{document}. Drisko [3] has a note implying that his techniques allow constructions of Spence difference sets in groups with a noncentral normal subgroup isomorphic to C3d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3<^>{d+1}$$\end{document} as long as 3d+1-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3<^>{d+1}-1}{2}$$\end{document} is a prime power. We generalize this result by constructing Spence difference sets in similar families of groups, but we drop the requirement that 3d+1-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3<^>{d+1}-1}{2}$$\end{document} is a prime power. We conjecture that any group of order 3d+1(3d+1-1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3<^>{d+1}(3<^>{d+1}-1)}{2}$$\end{document} with a normal subgroup isomorphic to C3d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3<^>{d+1}$$\end{document} will have a Spence difference set (this is analogous to Dillon's conjecture in 2-groups, and that result was proved in Drisko's work). Finally, we present the first known example of a Spence difference set in a group where the Sylow 3-subgroup is nonabelian and has exponent bigger than 3. This new construction, found by computing the full automorphism group Aut(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}(\mathcal {D})$$\end{document} of a symmetric design associated to a known Spence difference set and identifying a regular subgroup of Aut(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}(\mathcal {D})$$\end{document}, uses (3, 3, 3, 1)-relative difference sets to describe the difference set.
引用
收藏
页数:10
相关论文
共 10 条