Van der Waals gap engineering in 2D materials for energy storage and conversion

被引:1
|
作者
Chen, Qian [1 ]
Wei, Yi [2 ]
Zhai, Peng-Bo [3 ]
Gong, Yong-Ji [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[3] Tianmushan Lab Xixi Octagon City, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; Van der Waals gap engineering; Interlayer intercalation; Performance optimization; Energy storage and conversion; METAL DICHALCOGENIDES; ULTRATHIN NANOSHEETS; MOS2; HETEROSTRUCTURES; PERFORMANCE; INTERLAYER;
D O I
10.1007/s12598-024-02817-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since the discovery of two-dimensional (2D) materials, they have garnered significant attention from researchers owing to the exceptional and modifiable physical and chemical properties. The weak interlayer interactions in 2D materials enable precise control over Van der Waals gaps, thereby enhancing their performance and introducing novel characteristics. By regulating the Van der Waals gap, 2D materials exhibit a diverse range of applications in the field of energy storage and conversion. This article provides a comprehensive review of various methods for manipulating Van der Waals gaps in 2D materials, including interlayer intercalation, guest atom doping within the lattice, formation of Van der Waals heterojunctions, and adjustment of stacking modes. Moreover, the impacts of these manipulations on energy storage and conversion applications are also summarized. Finally, potential future research directions are proposed to shed light on advancements in Van der Waals gap engineering.
引用
收藏
页码:6125 / 6143
页数:19
相关论文
共 50 条
  • [1] Van der Waals gap engineering in 2D materials for energy storage and conversion
    Qian Chen
    Yi Wei
    PengBo Zhai
    YongJi Gong
    Rare Metals, 2024, 43 (12) : 6125 - 6143
  • [2] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [3] Non-van der Waals 2D Materials for Electrochemical Energy Storage
    Tantis, Iosif
    Talande, Smita
    Tzitzios, Vasileios
    Basina, Georgia
    Shrivastav, Vishal
    Bakandritsos, Aristides
    Zboril, Radek
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (19)
  • [4] Interfacial Engineering of Van der Waals Coupled 2D Layered Materials
    Hong, Hao
    Liu, Can
    Cao, Ting
    Jin, Chenhao
    Wang, Shaoxin
    Wang, Feng
    Liu, Kaihui
    ADVANCED MATERIALS INTERFACES, 2017, 4 (09):
  • [5] Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials
    Ren, Hongtao
    Xiang, Gang
    NANOMATERIALS, 2023, 13 (16)
  • [6] 2D materials and van der Waals heterostructures
    Novoselov, K. S.
    Mishchenko, A.
    Carvalho, A.
    Castro Neto, A. H.
    SCIENCE, 2016, 353 (6298)
  • [7] Mapping and controlling thermal spectra of 2D van der Waals materials for energy harvesting, storage, and electronics
    Hu, Yongjie
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017,
  • [8] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [9] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [10] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)