RRWNet: Recursive Refinement Network for effective retinal artery/vein segmentation and classification

被引:0
|
作者
Morano, Jose [1 ,2 ]
Aresta, Guilherme [1 ,2 ]
Bogunovic, Hrvoje [1 ,2 ]
机构
[1] Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Reti, Vienna, Austria
[2] Med Univ Vienna, Inst Artificial Intelligence, Ctr Med Data Sci, Vienna, Austria
关键词
Deep learning; Artery-vein; Classification; Segmentation; Retina; Medical image analysis; Color fundus; BLOOD-VESSEL SEGMENTATION; IMAGES; ARTERIOLE;
D O I
10.1016/j.eswa.2024.124970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The caliber and configuration of retinal blood vessels serve as important biomarkers for various diseases and medical conditions. A thorough analysis of the retinal vasculature requires the segmentation of the blood vessels and their classification into arteries and veins, typically performed on color fundus images obtained by retinography. However, manually performing these tasks is labor-intensive and prone to human error. While several automated methods have been proposed to address this task, the current state of art faces challenges due to manifest classification errors affecting the topological consistency of segmentation maps. In this work, we introduce RRWNet, a novel end-to-end deep learning framework that addresses this limitation. The framework consists of a fully convolutional neural network that recursively refines semantic segmentation maps, correcting manifest classification errors and thus improving topological consistency. In particular, RRWNet is composed of two specialized subnetworks: a Base subnetwork that generates base segmentation maps from the input images, and a Recursive Refinement subnetwork that iteratively and recursively improves these maps. Evaluation on three different public datasets demonstrates the state-of-the-art performance of the proposed method, yielding more topologically consistent segmentation maps with fewer manifest classification errors than existing approaches. In addition, the Recursive Refinement module within RRWNet proves effective in post-processing segmentation maps from other methods, further demonstrating its potential. The model code, weights, and predictions are publicly available at https://github.com/j-morano/rrwnet.
引用
收藏
页数:17
相关论文
共 41 条
  • [41] Spatial relationship between intrahepatic artery and portal vein based on the fusion image of CT-arterial portography (CTAP) and CT-angiography (CTA): New classification for hepatic artery at hepatic hilum and the segmentation of right anterior section of the liver
    Ibukuro, Kenji
    Takeguchi, Takaya
    Fukuda, Hozumi
    Abe, Shoko
    Tobe, Kimiko
    Tanaka, Rei
    Tagawa, Kazumi
    EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (02) : E158 - E165