Optimizing the iodide-adduct chemical ionization mass spectrometry (CIMS) quantitative method for toluene oxidation intermediates: experimental insights into functional-group differences

被引:1
作者
Song, Mengdi [1 ,3 ]
He, Shuyu [1 ,3 ]
Li, Xin [1 ,2 ,3 ]
Liu, Ying [1 ,3 ]
Lou, Shengrong [4 ]
Lu, Sihua [1 ,3 ]
Zeng, Limin [1 ,3 ]
Zhang, Yuanhang [1 ,3 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100871, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[3] Minist Educ, Int Joint Lab Reg Pollut Control, Beijing 100816, Peoples R China
[4] Shanghai Acad Environm Sci, State Environm Protect Key Lab Format & Prevent Ur, Shanghai 200233, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ORGANIC AEROSOL FORMATION; ATMOSPHERIC OXIDATION; GAS-PHASE; OZONE FORMATION; BASIS-SETS; OH; MECHANISM; PRODUCTS; SENSITIVITY; MOLECULES;
D O I
10.5194/amt-17-5113-2024
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Iodide-adduct time-of-flight chemical ionization mass spectrometry (I-CIMS) has been developed as a powerful tool for detecting the oxidation products of volatile organic compounds. However, the accurate quantification of species that do not have generic standards remains a challenge for I-CIMS application. To accurately quantify aromatic hydrocarbon oxidation intermediates, both quantitative and semi-quantitative methods for I-CIMS were established for intermediate species. The direct quantitative experimental results reveal a correlation between sensitivity to iodide addition and the number of polar functional groups (keto groups, hydroxyl groups, and acid groups) present in the species. Leveraging the selectivity of I-CIMS for species with diverse functional groups, this study established semi-quantitative equations for four distinct categories: monophenols, monoacids, polyphenol or diacid species, and species with multiple functional groups. The proposed classification method offers a pathway to enhancing the accuracy of the semi-quantitative approach, achieving an improvement in R2 values from 0.52 to beyond 0.88. Overall, the categorized semi-quantitative method was utilized to quantify intermediates formed during the oxidation of toluene under both low-NO and high-NO conditions, revealing the differential variations in oxidation products with varying levels of NOx concentration.
引用
收藏
页码:5113 / 5127
页数:15
相关论文
共 68 条
[1]   Atmospheric degradation of volatile organic compounds [J].
Atkinson, R ;
Arey, J .
CHEMICAL REVIEWS, 2003, 103 (12) :4605-4638
[2]   Primary Atmospheric Oxidation Mechanism for Toluene [J].
Baltaretu, Cristian O. ;
Lichtman, Eben I. ;
Hadler, Amelia B. ;
Elrod, Matthew J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (01) :221-230
[3]   An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation [J].
Barua, Shawon ;
Iyer, Siddharth ;
Kumar, Avinash ;
Seal, Prasenjit ;
Rissanen, Matti .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (18) :10517-10532
[4]   A field-deployable, chemical ionization time-of-flight mass spectrometer [J].
Bertram, T. H. ;
Kimmel, J. R. ;
Crisp, T. A. ;
Ryder, O. S. ;
Yatavelli, R. L. N. ;
Thornton, J. A. ;
Cubison, M. J. ;
Gonin, M. ;
Worsnop, D. R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (07) :1471-1479
[5]   Quantification of isomer-resolved iodide chemical ionization mass spectrometry sensitivity and uncertainty using a voltage-scanning approach [J].
Bi, Chenyang ;
Krechmer, Jordan E. ;
Frazier, Graham O. ;
Xu, Wen ;
Lambe, Andrew T. ;
Claflin, Megan S. ;
Lerner, Brian M. ;
Jayne, John T. ;
Worsnop, Douglas R. ;
Canagaratna, Manjula R. ;
Isaacman-VanWertz, Gabriel .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (10) :6835-6850
[6]   Correcting bias in log-linear instrument calibrations in the context of chemical ionization mass spectrometry [J].
Bi, Chenyang ;
Krechmer, Jordan E. ;
Canagaratna, Manjula R. ;
Isaacman-VanWertz, Gabriel .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (10) :6551-6560
[7]   Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds [J].
Bi, Chenyang ;
Krechmer, Jordan E. ;
Frazier, Graham O. ;
Xu, Wen ;
Lambe, Andrew T. ;
Claflin, Megan S. ;
Lerner, Brian M. ;
Jayne, John T. ;
Worsnop, Douglas R. ;
Canagaratna, Manjula R. ;
Isaacman-VanWertz, Gabriel .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (05) :3895-3907
[8]   Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol [J].
Bianchi, Federico ;
Kurten, Theo ;
Riva, Matthieu ;
Mohr, Claudia ;
Rissanen, Matti P. ;
Roldin, Pontus ;
Berndt, Torsten ;
Crounse, John D. ;
Wennberg, Paul O. ;
Mentel, Thomas F. ;
Wildt, Juergen ;
Junninen, Heikki ;
Jokinen, Tuija ;
Kulmala, Markku ;
Worsnop, Douglas R. ;
Thornton, Joel A. ;
Donahue, Neil ;
Kjaergaard, Henrik G. ;
Ehn, Mikael .
CHEMICAL REVIEWS, 2019, 119 (06) :3472-3509
[9]   Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data [J].
Bloss, C ;
Wagner, V ;
Bonzanini, A ;
Jenkin, ME ;
Wirtz, K ;
Martin-Reviejo, M ;
Pilling, MJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :623-639
[10]   Application of smog chambers in atmospheric process studies [J].
Chu, Biwu ;
Chen, Tianzeng ;
Liu, Yongchun ;
Ma, Qingxin ;
Mu, Yujing ;
Wang, Yonghong ;
Ma, Jinzhu ;
Zhang, Peng ;
Liu, Jun ;
Liu, Chunshan ;
Gui, Huaqiao ;
Hu, Renzhi ;
Hu, Bo ;
Wang, Xinming ;
Wang, Yuesi ;
Liu, Jianguo ;
Xie, Pinhua ;
Chen, Jianmin ;
Liu, Qian ;
Jiang, Jingkun ;
Li, Junhua ;
He, Kebin ;
Liu, Wenqing ;
Jiang, Guibin ;
Hao, Jiming ;
He, Hong .
NATIONAL SCIENCE REVIEW, 2022, 9 (02)