"Quantum Geometric Nesting" and Solvable Model Flat-Band Systems

被引:1
作者
Han, Zhaoyu [1 ]
Herzog-Arbeitman, Jonah [2 ]
Bernevig, B. Andrei [2 ,3 ,4 ]
Kivelson, Steven A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, P Manuel Lardizabal 4, Donostia San Sebastian 20018, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
来源
PHYSICAL REVIEW X | 2024年 / 14卷 / 04期
基金
欧洲研究理事会;
关键词
PHYSICS;
D O I
10.1103/PhysRevX.14.041004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concept of "quantum geometric nesting" (QGN) to characterize the idealized ordering tendencies of certain flat-band systems implicit in the geometric structure of the flat-band subspace. Perfect QGN implies the existence of an infinite class of local interactions that can be explicitly constructed and give rise to solvable ground states with various forms of possible fermion bilinear order, including flavor ferromagnetism, density waves, and superconductivity. For the ideal Hamiltonians constructed in this way, we show that certain aspects of the low-energy spectrum can also be exactly computed including, in the superconducting case, the phase stiffness. Examples of perfect QGN include flat bands with certain symmetries (e.g., chiral or time reversal) and non-symmetry-related cases exemplified with an engineered model for pair-density wave. Extending this approach, we obtain exact superconducting ground states with nontrivial pairing symmetry.
引用
收藏
页数:14
相关论文
共 123 条
  • [1] The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond
    Agterberg, Daniel F.
    Davis, J. C. Seamus
    Edkins, Stephen D.
    Fradkin, Eduardo
    Van Harlingen, Dale J.
    Kivelson, Steven A.
    Lee, Patrick A.
    Radzihovsky, Leo
    Tranquada, John M.
    Wang, Yuxuan
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 : 231 - 270
  • [2] Γ valley transition metal dichalcogenide moire bands
    Angeli, Mattia
    MacDonald, Allan H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [3] Twisted bilayer graphene. V. Exact analytic many-body excitations in Coulomb Hamiltonians: Charge gap, Goldstone modes, and absence of Cooper pairing
    Bernevig, B. Andrei
    Lian, Biao
    Cowsik, Aditya
    Xie, Fang
    Regnault, Nicolas
    Song, Zhi-Da
    [J]. PHYSICAL REVIEW B, 2021, 103 (20)
  • [4] Bouhon A, 2023, Arxiv, DOI arXiv:2303.02180
  • [5] Topological quantum chemistry
    Bradlyn, Barry
    Elcoro, L.
    Cano, Jennifer
    Vergniory, M. G.
    Wang, Zhijun
    Felser, C.
    Aroyo, M. I. .
    Bernevig, B. Andrei
    [J]. NATURE, 2017, 547 (7663) : 298 - 305
  • [6] Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling
    Bultinck, Nick
    Khalaf, Eslam
    Liu, Shang
    Chatterjee, Shubhayu
    Vishwanath, Ashvin
    Zaletel, Michael P.
    [J]. PHYSICAL REVIEW X, 2020, 10 (03):
  • [7] General construction and topological classification of crystalline flat bands
    Calugaru, Dumitru
    Chew, Aaron
    Elcoro, Luis
    Xu, Yuanfeng
    Regnault, Nicolas
    Song, Zhi-Da
    Bernevig, B. Andrei
    [J]. NATURE PHYSICS, 2022, 18 (02) : 185 - +
  • [8] Designer fiat bands: Topology and enhancement of superconductivity
    Chan, Si Min
    Gremaud, B.
    Batrouni, G. G.
    [J]. PHYSICAL REVIEW B, 2022, 106 (10)
  • [9] Pairing and superconductivity in quasi-one-dimensional flat-band systems: Creutz and sawtooth lattices
    Chan, Si Min
    Gremaud, B.
    Batrouni, G. G.
    [J]. PHYSICAL REVIEW B, 2022, 105 (02)
  • [10] Chen F, 2023, Arxiv, DOI arXiv:2311.15092