Localized Surface Plasmon Resonance in Ag-In-Te based Quantum Dots and Core/shell Nanocrystals

被引:0
作者
Bhattacharya, Debadrita [1 ]
Debnath, Tushar [2 ]
机构
[1] Indian Inst Technol Guwahati, Ctr Nanotechnol, Kamrup 781039, Assam, India
[2] Shiv Nadar Inst Eminence, Sch Nat Sci, Dept Chem, Nano Phys Spect Grp, Delhi Ncr 201314, Uttar Pradesh, India
关键词
LSPR; AgInTe2 quantum dot; plasmonic; AgInTe2/AgIn5Te8 core/shell nanocrystals; Self-assembly; ENHANCED RAMAN-SCATTERING; NANOPARTICLES; PHASE; SHAPE; SIZE;
D O I
10.1002/cnma.202400297
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Localized surface plasmon resonance (LSPR) in plasmonic nanomaterials can concentrate light in the nano-dimension, leading to an enhancement of the light intensity by order of magnitude. While LSPR is a subject of extensive research in chalcogenide semiconductor nanocrystals (NCs), research on tellurium multinary chalcogenides (MnCs) remains elusive, possibly due to non-availability of the corresponding quantum dots (QDs). In this report, we show the sequential switching of plasmonic to non-plasmonic properties during the colloidal synthesis of AgInTe2 QDs. The reaction passes through several intermediates including AgInTe2/AgIn5Te8 core/shell NCs, AgInTe2 microrods (MRs), AgInTe2 QDs, and finally AgInTe2 quantum dot chain (QDC). Here, the AgInTe2/AgIn5Te8 core/shell NCs and AgInTe2 QDs depict strong LSPR absorption in the visible-NIR region until similar to 2000 nm. We propose that small-size quantum confined and cation deficient AgInTe2 particles are responsible for the observation of LSPR modes in both cases due to presence of the free carriers (holes). Our work on developing Te-based plasmonic MnC QDs may find significant advancement in the nanoscale light-matter interaction in semiconductor research.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Localized Surface Plasmon Resonance in Semiconductor Nanocrystals [J].
Agrawal, Ankit ;
Cho, Shin Hum ;
Zandi, Omid ;
Ghosh, Sandeep ;
Johns, Robert W. ;
Milliron, Delia J. .
CHEMICAL REVIEWS, 2018, 118 (06) :3121-3207
[2]   Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: a mini-review [J].
Balitskii, O. A. .
MATERIALS TODAY ENERGY, 2021, 20
[3]   PHOTOCONDUCTIVITY AND VALENCE BAND-STRUCTURE OF AGINTE2 [J].
BELLABARBA, C ;
GANZALES, J ;
RINCON, C ;
QUINTERO, M .
SOLID STATE COMMUNICATIONS, 1986, 58 (04) :243-246
[4]   Breaking AgInTe2 Quantum Dot Chain to Fabricate AgInTe2-ZnS Janus Nanocrystals [J].
Bhattacharya, Debadrita ;
Bhakat, Arin ;
Debnath, Tushar .
INORGANIC CHEMISTRY, 2023, 62 (49) :20219-20227
[5]   Copper Iron Chalcogenide Semiconductor Nanocrystals in Energy and Optoelectronics Applications-State of the Art, Challenges, and Future Potential [J].
Bhattacharyya, Biswajit ;
Balischewski, Christian ;
Pacholski, Claudia ;
Pandey, Anshu ;
Bald, Ilko ;
Taubert, Andreas .
ADVANCED OPTICAL MATERIALS, 2023, 11 (08)
[6]   Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Wang, Yingmin ;
Masiello, David J. ;
Marks, Lawrence D. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12616-+
[7]   Ternary Metal Chalcogenides: Into the Exciton and Biexciton Dynamics [J].
Debnath, Tushar ;
Ghosh, Hirendra N. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (20) :6227-6238
[8]   Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities [J].
Faucheaux, Jacob A. ;
Stanton, Alexandria L. D. ;
Jain, Prashant K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (06) :976-985
[9]  
Gao B, 2012, NAT NANOTECHNOL, V7, P433, DOI [10.1038/NNANO.2012.83, 10.1038/nnano.2012.83]
[10]   Fixed Aspect Ratio Rod-to-Rod Conversion and Localized Surface Plasmon Resonance in Semiconducting I-V-VI Nanorods [J].
Guria, Amit K. ;
Prusty, Gyanaranjan ;
Chacrabarty, Supriya ;
Pradhan, Narayan .
ADVANCED MATERIALS, 2016, 28 (03) :447-+