Landscape-enabled algorithmic design for the cell switch-off problem in 5G ultra-dense networks

被引:0
|
作者
Galeano-Brajones, Jesus [1 ]
Luna, Francisco [2 ,3 ]
Carmona-Murillo, Javier [1 ]
Nebro, Antonio J. [2 ,3 ]
Coello, Carlos A. Coello [4 ]
Valenzuela-Valdes, Juan F. [5 ]
机构
[1] Univ Extremadura, Ctr Univ Merida, Dept Ingn Sistemas Informat & Telematicos, Merida, Spain
[2] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETS Ingn Informat, Malaga, Spain
[3] Univ Malaga, ITIS Software, Malaga, Spain
[4] CINVESTAV IPN, Evolutionary Computat Grp, Mexico City, Mexico
[5] Univ Granada, Dept Teoria Senal Telematica & Comunicac, CITIC, Granada, Spain
关键词
Exploratory landscape analysis; multi-objective optimization; metaheuristics; energy efficiency; 5G; FITNESS LANDSCAPES; WIRELESS NETWORKS; OPTIMIZATION;
D O I
10.1080/0305215X.2024.2346936
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid evolution of mobile communications, remarkably the fifth generation (5G) and research-stage sixth (6G), highlights the need for numerous heterogeneous base stations to meet high demands. However, the deployment of many base stations entails a high energy cost, which contradicts the concept of green networks promoted by next-generation networks. The Cell Switch-Off (CSO) problem addresses this by aiming to reduce energy consumption in ultra-dense networks without compromising service quality. This article explores the CSO problem from a multi-objective optimization perspective, focusing on how spatial network demand heterogeneity affects the multi-objective landscape of the problem. In addition to deep landscape understanding, it introduces a local search operator designed to exploit these landscape characteristics, improving the multi-objective efficiency of metaheuristics. The results indicate that increasing heterogeneity simplifies the exploration of the problem space, with the operator achieving closer approximations to the Pareto front, particularly in minimizing network power consumption.
引用
收藏
页码:309 / 331
页数:23
相关论文
共 44 条
  • [1] Approaching the cell switch-off problem in 5G ultra-dense networks with dynamic multi-objective optimization
    Luna, Francisco
    Zapata-Cano, Pablo H.
    Gonzalez-Macias, Juan C.
    Valenzuela-Valdes, Juan F.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 110 : 876 - 891
  • [2] Designing problem-specific operators for solving the Cell Switch-Off problem in ultra-dense 5G networks with hybrid MOEAs
    Galeano-Brajones, Jesus
    Luna-Valero, Francisco
    Carmona-Murillo, Javier
    Cano, Pablo H. Zapata
    Valenzuela-Valdes, Juan F.
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [3] 5G ULTRA-DENSE CELLULAR NETWORKS
    Ge, Xiaohu
    Tu, Song
    Mao, Guoqiang
    Wang, Cheng-Xiang
    Han, Tao
    IEEE WIRELESS COMMUNICATIONS, 2016, 23 (01) : 72 - 79
  • [4] Survey of energy efficiency for 5G ultra-dense networks
    Ma Z.-G.
    Song J.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (08): : 968 - 980
  • [5] A Capacity-Enhanced Local Search for the 5G Cell Switch-off Problem
    Luna, Francisco
    Zapata-Cano, Pablo H.
    Palomares-Caballero, Angel
    Valenzuela-Valdes, Juan F.
    OPTIMIZATION AND LEARNING, 2020, 1173 : 165 - 178
  • [6] Addressing the 5G Cell Switch-off Problem with a Multi-objective Cellular Genetic Algorithm
    Luna, Francisco
    Luque-Baena, Rafael M.
    Martinez, Jesus
    Valenzuela-Valdes, Juan F.
    Padilla, Pablo
    2018 IEEE 5G WORLD FORUM (5GWF), 2018, : 422 - 426
  • [7] A survey on sleep mode techniques for ultra-dense networks in 5G and beyond
    Salahdine, Fatima
    Opadere, Johnson
    Liu, Qiang
    Han, Tao
    Zhang, Ning
    Wu, Shaohua
    COMPUTER NETWORKS, 2021, 201
  • [8] Effect of LOS/NLOS propagation on 5G ultra-dense networks
    Galiotto, Carlo
    Pratas, Nuno K.
    Doyle, Linda
    Marchetti, Nicola
    COMPUTER NETWORKS, 2017, 120 : 126 - 140
  • [9] Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey
    Adedoyin, Mary A.
    Falowo, Olabisi E.
    IEEE ACCESS, 2020, 8 : 22893 - 22932
  • [10] Fundamental Implications for Location Accuracy in Ultra-Dense 5G Cellular Networks
    Roth, John D.
    Tummala, Murali
    McEachen, John C.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (02) : 1784 - 1795