We construct equivariant Khovanov spectra for periodic links using the Burnside functor construction introduced by Lawson, Lipshitz, and Sarkar. By identifying the fixed-point sets, we obtain rank inequalities for odd and even Khovanov homologies, and their annular filtrations, for prime-periodic links in S 3 .
机构:
Univ Paris Diderot, Inst Math Jussieu, CNRS, UMR 7586, F-75013 Paris, FranceUniv Paris Diderot, Inst Math Jussieu, CNRS, UMR 7586, F-75013 Paris, France
机构:
Univ Illinois, Dept Math Stat & Comp Sci MC 249, 851 South Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci MC 249, 851 South Morgan St, Chicago, IL 60607 USA
Kauffman, Louis H.
KNOT THEORY AND ITS APPLICATIONS,
2016,
670
: 105
-
139
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA