A novel multi-objective generative design approach for sustainable building using multi-task learning (ANN) integration

被引:2
作者
Li, Mingchen [1 ,2 ]
Wang, Zhe [1 ,2 ]
Chang, Hao [3 ]
Wang, Zhoupeng [3 ]
Guo, Juanli [4 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[2] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Peoples R China
[3] Tianjin Univ, Sch Future Technol, Tianjin, Peoples R China
[4] Tianjin Univ, Sch Architecture, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Building performance optimization (BPO); Generative design; Artificial neural network (ANN); Multi-task learning (MTL); Multi-objective optimization (MOO); Code compliance check; ENERGY PERFORMANCE; SENSITIVITY ANALYSES; META-MODEL; OPTIMIZATION; METHODOLOGY; CONSUMPTION; PREDICTION; ALGORITHM; IMPROVE;
D O I
10.1016/j.apenergy.2024.124220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Building Performance Optimization (BPO) plays a pivotal role in enhancing building performance, guaranteeing comfort while reducing resource consumption. Existing performance-driven generative design is computational demanding and difficult to be generalized to other similar buildings with difficult to be generalized to other building types or climate conditions. To fill this gap, this paper introduces a novel framework, which integrates multitask learning (MTL), code compliance check, and multi-objective optimization through NSGA-III algorithm. This framework is able to identify Paratoo Optimal design solutions, which comply with building codes, at low computation costs. The framework begins with selecting key design variables that are critical to building energy, comfort performance and life cycle cost. It then employs MTL to enhance the model's accuracy while reducing computational costs. Next, we designed a code compliance checking module followed by the NSGA-III optimization process, with the objective of identifying solutions that comply with existing building codes. The results indicate that the proposed MTL network achieved an R2 2 score of 0.983-0.993 on the test set. In the particular case study where equal weights are preferred, this approach yielded noteworthy reductions of 27.65%, 19.55%, and 31.13% in Building Energy Consumption (BEC), Life Cycle Cost (LCC), and Residue of continuous Daylight Autonomy (RcDA), respectively, for a rural dwelling, and exclude solutions that fail to satisfy regulatory standards. This framework allows designer to input the weights of each objective based on their preference and can be applied to other building types and climate regions. Last, we develop a solution selection tool based on the results output by the framework we proposed, which can be found at https://github.com/LiMingchen159/Vill age-House-Design-Strategy-in-Hebei-Province-China.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Multi-objective optimization of the multi-story residential building with passive design strategy in South Korea
    Jung, Yujun
    Heo, Yeonsook
    Lee, Hoseong
    BUILDING AND ENVIRONMENT, 2021, 203
  • [22] Multi-objective approach for the automatic design of optical systems
    Carneiro de Albuquerque, Braulio Fonseca
    de Sousa, Fabiano Luis
    Montes, Amauri Silva
    OPTICS EXPRESS, 2016, 24 (06): : 6619 - 6643
  • [23] A Simple Approach to Balance Task Loss in Multi-Task Learning
    Liang, Sicong
    Deng, Chang
    Zhang, Yu
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 812 - 823
  • [24] Multi-Objective Task Scheduling Approach for Fog Computing
    Abdel-Basset, Mohamed
    Moustafa, Nour
    Mohamed, Reda
    Elkomy, Osama M.
    Abouhawwash, Mohamed
    IEEE ACCESS, 2021, 9 (09): : 126988 - 127009
  • [25] A Self-Adaptive Evolutionary Multi-Task Based Constrained Multi-Objective Evolutionary Algorithm
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Wang, Minghui
    Qu, Boyang
    Yue, Caitong
    Guo, Yinan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1098 - 1112
  • [26] A generative design-based optimization model for multi-objective construction site layout planning
    Wefki, Hossam
    Salah, Mona
    Elbeltagi, Emad
    Elsheikh, Asser
    Khallaf, Rana
    ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2024,
  • [27] A Multi-objective Design of Advanced Power Distribution Network Using an Evolutionary Approach
    Kumar, Deepak
    Samantaray, S. R.
    2014 STUDENTS CONFERENCE ON ENGINEERING AND SYSTEMS (SCES), 2014,
  • [28] A multi-task learning model for building electrical load prediction
    Liu, Chien-Liang
    Tseng, Chun-Jan
    Huang, Tzu-Hsuan
    Yang, Jie-Si
    Huang, Kai -Bin
    ENERGY AND BUILDINGS, 2023, 278
  • [29] MULTI-OBJECTIVE OPTIMIZATION APPROACH FOR IMPROVING PERFORMANCE OF BUILDING
    Kamenders, A.
    Blumberga, A.
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2009, 3 (03) : 70 - +
  • [30] Building design and operation multi-objective optimization: Energy costs vs. Emissions
    Tian, Ying
    Chai, Kang
    ENERGY AND BUILDINGS, 2025, 329