Tissue module discovery in single-cell-resolution spatial transcriptomics data via cell-cell interaction-aware cell embedding

被引:2
|
作者
Li, Yuzhe [1 ,2 ,3 ]
Zhang, Jinsong [1 ,2 ,4 ,5 ]
Gao, Xin [6 ,7 ,8 ]
Zhang, Qiangfeng Cliff [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Frontier Res Ctr Biol Struct, Ctr Synthet & Syst Biol, Sch Life Sci, Beijing 100084, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[4] Tsinghua Peking Ctr Life Sci, Beijing 100084, Peoples R China
[5] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[6] King Abdullah Univ Sci & Technol KAUST, Comp Sci Program, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia
[7] King Abdullah Univ Sci & Technol KAUST, KAUST Computat Biosci Res Ctr CBRC, Thuwal 239556900, Saudi Arabia
[8] BioMap, Beijing 100086, Peoples R China
基金
中国国家自然科学基金;
关键词
GLYCOGEN CELLS; MOUSE; ATLAS; ARCHITECTURE; EXPRESSION;
D O I
10.1016/j.cels.2024.05.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational methods are desired for single-cell-resolution spatial transcriptomics (ST) data analysis to uncover spatial organization principles for how individual cells exert tissue-specific functions. Here, we present ST data analysis via interaction-aware cell embedding (SPACE), a deep-learning method for cell-type identification and tissue module discovery from single-cell-resolution ST data by learning a cell representation that captures its gene expression profile and interactions with its spatial neighbors. SPACE identified spatially informed cell subtypes defined by their special spatial distribution patterns and distinct proximal- interacting cell types. SPACE also automatically discovered "cell communities"-tissue modules with discernible boundaries and a uniform spatial distribution of constituent cell types. For each cell community, SPACE outputs a characteristic proximal cell-cell interaction network associated with physiological processes, which can be used to refine ligand-receptor-based intercellular signaling analyses. We envision that SPACE can be used in large-scale ST projects to understand how proximal cell-cell interactions contribute to emergent biological functions within cell communities. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:578 / 592.e7
页数:23
相关论文
共 50 条
  • [1] Screening cell-cell communication in spatial transcriptomics via collective optimal transport
    Cang, Zixuan
    Zhao, Yanxiang
    Almet, Axel A. A.
    Stabell, Adam
    Ramos, Raul
    Plikus, Maksim V. V.
    Atwood, Scott X. X.
    Nie, Qing
    NATURE METHODS, 2023, 20 (02) : 218 - +
  • [2] The landscape of cell-cell communication through single-cell transcriptomics
    Almet, Axel A.
    Cang, Zixuan
    Jin, Suoqin
    Nie, Qing
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 12 - 23
  • [3] Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics
    Gulati, Gunsagar S.
    D'Silva, Jeremy Philip
    Liu, Yunhe
    Wang, Linghua
    Newman, Aaron M.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2025, 26 (01) : 11 - 31
  • [4] Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution
    Qian, Jingyang
    Shao, Xin
    Bao, Hudong
    Fang, Yin
    Guo, Wenbo
    Li, Chengyu
    Li, Anyao
    Hua, Hua
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [5] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [6] Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
    Shen, Rongbo
    Liu, Lin
    Wu, Zihan
    Zhang, Ying
    Yuan, Zhiyuan
    Guo, Junfu
    Yang, Fan
    Zhang, Chao
    Chen, Bichao
    Feng, Wanwan
    Liu, Chao
    Guo, Jing
    Fan, Guozhen
    Zhang, Yong
    Li, Yuxiang
    Xu, Xun
    Yao, Jianhua
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm
    Ding, Qian
    Yang, Wenyi
    Xue, Guangfu
    Liu, Hongxin
    Cai, Yideng
    Que, Jinhao
    Jin, Xiyun
    Luo, Meng
    Pang, Fenglan
    Yang, Yuexin
    Lin, Yi
    Liu, Yusong
    Sun, Haoxiu
    Tan, Renjie
    Wang, Pingping
    Xu, Zhaochun
    Jiang, Qinghua
    GENOME BIOLOGY, 2024, 25 (01):
  • [8] Comparative analysis of cell-cell communication at single-cell resolution
    Wilk, Aaron J.
    Shalek, Alex K.
    Holmes, Susan
    Blish, Catherine A.
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 470 - 483
  • [9] Mapping hormone-regulated cell-cell interaction networks in the human breast at single-cell resolution
    Murrow, Lyndsay M.
    Weber, Robert J.
    Caruso, Joseph A.
    McGinnis, Christopher S.
    Phong, Kiet
    Gascard, Phillppe
    Rabadam, Gabrielle
    Borowsky, Alexander D.
    Desai, Tejal A.
    Thomson, Matthew
    Tlsty, Thea
    Gartner, Zev J.
    CELL SYSTEMS, 2022, 13 (08) : 644 - +
  • [10] scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)