Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity

被引:4
作者
Cai, Jia-Wei [1 ]
Ye, Jing-Ting [1 ]
Zhong, Ya-Nan [1 ]
Zhang, Zhong-Da [1 ]
Zong, Hao [1 ]
Li, Li-Xing [1 ]
Han, Xue-Er [1 ]
Xu, Jian-Long [1 ]
Gao, Xu [1 ]
Lee, Shuit-Tong [1 ,2 ]
Wang, Sui-Dong [1 ,2 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn MIMSE, MUST SUDA Joint Res Ctr Adv Funct Mat, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Synaptic Devices; Memcapacitors; Short-TermPlasticity; Long-Term Plasticity; Metaplasticity; Ion Redistribution Effect; NETWORKS;
D O I
10.1021/acsami.4c09593
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.
引用
收藏
页码:47996 / 48004
页数:9
相关论文
共 46 条
[1]   Metaplasticity: tuning synapses and networks for plasticity [J].
Abraham, Wickliffe C. .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (05) :387-399
[2]   Organic thin film memcapacitors [J].
Cai, Jia-Wei ;
Li, Li-Xing ;
Xu, Chao ;
Feng, Yang ;
Zhong, Ya-Nan ;
Xu, Jian-Long ;
Gao, Xu ;
Wang, Sui-Dong .
APPLIED PHYSICS LETTERS, 2019, 114 (04)
[3]   Synaptic plasticity: Multiple forms, functions, and mechanisms [J].
Citri, Ami ;
Malenka, Robert C. .
NEUROPSYCHOPHARMACOLOGY, 2008, 33 (01) :18-41
[4]   Energy-efficient memcapacitor devices for neuromorphic computing [J].
Demasius, Kai-Uwe ;
Kirschen, Aron ;
Parkin, Stuart .
NATURE ELECTRONICS, 2021, 4 (10) :748-756
[5]   Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors [J].
Di Ventra, Massimiliano ;
Pershin, Yuriy V. ;
Chua, Leon O. .
PROCEEDINGS OF THE IEEE, 2009, 97 (10) :1717-1724
[6]   An Oxide Schottky Junction Artificial Optoelectronic Synapse [J].
Gao, Shuang ;
Liu, Gang ;
Yang, Huali ;
Hu, Chao ;
Chen, Qilai ;
Gong, Guodong ;
Xue, Wuhong ;
Yi, Xiaohui ;
Shang, Jie ;
Li, Run-Wei .
ACS NANO, 2019, 13 (02) :2634-2642
[7]   Organic mixed conductors for bioinspired electronics [J].
Gkoupidenis, P. ;
Zhang, Y. ;
Kleemann, H. ;
Ling, H. ;
Santoro, F. ;
Fabiano, S. ;
Salleo, A. ;
van de Burgt, Y. .
NATURE REVIEWS MATERIALS, 2024, 9 (02) :134-149
[8]   Artificial Neuron Devices [J].
He, Ke ;
Wang, Cong ;
He, Yongli ;
Su, Jiangtao ;
Chen, Xiaodong .
CHEMICAL REVIEWS, 2023, 123 (23) :13796-13865
[9]   Memcapacitor Crossbar Array with Charge Trap NAND Flash Structure for Neuromorphic Computing [J].
Hwang, Sungmin ;
Yu, Junsu ;
Song, Min Suk ;
Hwang, Hwiho ;
Kim, Hyungjin .
ADVANCED SCIENCE, 2023, 10 (32)
[10]   Admittance measurements on OFET channel and its modeling with R-C network [J].
Jung, Keum-Dong ;
Lee, Cheon An ;
Park, Dong-Wook ;
Park, Byung-Gook ;
Shin, Hyungcheol ;
Lee, Jong Duk .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (03) :204-206