A Systematic Survey on Segmentation Algorithms for Musculoskeletal Tissues in Ultrasound Imaging

被引:1
|
作者
Ramakrishnan, Ananth Hari [1 ]
Rajappa, Muthaiah [1 ]
Kirthivasan, Kannan [1 ]
Chockalingam, Nachiappan [2 ]
Chatzistergos, Panagiotis E. [2 ]
Amirtharajan, Rengarajan [3 ]
机构
[1] SASTRA Deemed Univ, Sch Comp, Thanjavur 613401, India
[2] Staffordshire Univ, Sch Life Sci & Educ, Ctr Sci, Stoke On Trent ST4 2DE, England
[3] SASTRA Deemed Univ, Sch Elect & Elect Engn, Thanjavur 613401, India
关键词
LEVEL SET METHOD; ACTIVE CONTOURS; PROSTATE SEGMENTATION; BONE SEGMENTATION; IMAGES; MUSCLE; TENDON; MODEL; LOCALIZATION; OPTIMIZATION;
D O I
10.1007/s11831-024-10171-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ultrasound imaging is widely used for the clinical assessment and study of musculoskeletal tissues because of its capacity for real-time imaging, low cost, high availability and portability. Objectively identifying and segmenting these tissues in ultrasound images can enhance disease diagnosis and biomechanical research. Manual segmentation is tedious, time-consuming and examiner-dependent. At the same time, ultrasound images suffer from poor image quality and low contrast between different regions in the image, making visual interpretation difficult. Hence, there is a need for reliable algorithms for computerised segmentation. This paper reviews the techniques developed for automated and semi-automated segmentation of vital musculoskeletal tissues (i.e. tendon, ligament, bone, muscle, plantar fascia and cartilage) from ultrasound images. This paper comprehensively explains each methodology and discusses distinguishing features, advantages and limitations to help the reader decide the most appropriate method on an application-specific basis.
引用
收藏
页码:1335 / 1368
页数:34
相关论文
共 50 条
  • [1] Artificial intelligence in musculoskeletal ultrasound imaging
    Shin, YiRang
    Yang, Jaemoon
    Lee, Young Han
    Kim, Sungjun
    ULTRASONOGRAPHY, 2021, 40 (01) : 30 - 44
  • [2] Automated Segmentation of Tissues Using CT and MRI: A Systematic Review
    Lenchik, Leon
    Heacock, Laura
    Weaver, Ashley A.
    Boutin, Robert D.
    Cook, Tessa S.
    Itri, Jason
    Filippi, Christopher G.
    Gullapalli, Rao P.
    Lee, James
    Zagurovskaya, Marianna
    Retson, Tara
    Godwin, Kendra
    Nicholson, Joey
    Narayana, Ponnada A.
    ACADEMIC RADIOLOGY, 2019, 26 (12) : 1695 - 1704
  • [3] Ultrasound Imaging of the Musculoskeletal System
    Cook, Cristi R.
    VETERINARY CLINICS OF NORTH AMERICA-SMALL ANIMAL PRACTICE, 2016, 46 (03) : 355 - +
  • [4] Retinal Vessels Segmentation Techniques and Algorithms: A Survey
    Almotiri, Jasem
    Elleithy, Khaled
    Elleithy, Abdelrahman
    APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [5] A Survey of Brain Tumor Segmentation and Classification Algorithms
    Biratu, Erena Siyoum
    Schwenker, Friedhelm
    Ayano, Yehualashet Megersa
    Debelee, Taye Girma
    JOURNAL OF IMAGING, 2021, 7 (09)
  • [6] A concept for fully automated segmentation of bone in ultrasound imaging
    Ramakrishnan, Ananth Hari
    Rajappa, Muthaiah
    Krithivasan, Kannan
    Chockalingam, Nachiappan
    Chatzistergos, Panagiotis E.
    Amirtharajan, Rengarajan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] 3D Segmentation Algorithms for Computerized Tomographic Imaging: a Systematic Literature Review
    Carvalho, L. E.
    Sobieranski, A. C.
    von Wangenheim, A.
    JOURNAL OF DIGITAL IMAGING, 2018, 31 (06) : 799 - 850
  • [8] Survey of Denoising, Segmentation and Classification of Pancreatic Cancer Imaging
    Kaur, Harjinder
    Saini, Sumindar Kaur
    Thakur, Niharika
    Juneja, Mamta
    CURRENT MEDICAL IMAGING, 2024, 20
  • [9] Dynamic Ultrasound Imaging Applications to Quantify Musculoskeletal Function
    Sikdar, Siddhartha
    Wei, Qi
    Cortes, Nelson
    EXERCISE AND SPORT SCIENCES REVIEWS, 2014, 42 (03): : 126 - 135
  • [10] Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms
    Jiang, Jingang
    Guo, Yafeng
    Bi, Zhuming
    Huang, Zhiyuan
    Yu, Guang
    Wang, Jinke
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (01) : 615 - 651