Investigating Low-Cost LLM Annotation for Spoken Dialogue Understanding Datasets

被引:0
作者
Druart, Lucas [1 ,2 ]
Vielzeuf, Valentin [2 ]
Esteve, Yannick [1 ]
机构
[1] Lab Informat Avignon, Avignon, France
[2] Orange Innovat, Rennes, France
来源
TEXT, SPEECH, AND DIALOGUE, TSD 2024, PT II | 2024年 / 15049卷
关键词
spoken dialogue systems; automatic annotation; large language models; spoken language understanding;
D O I
10.1007/978-3-031-70566-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In spoken Task-Oriented Dialogue (TOD) systems, the choice of the semantic representation describing the users' requests is key to a smooth interaction. Indeed, the system uses this representation to reason over a database and its domain knowledge to choose its next action. The dialogue course thus depends on the information provided by this semantic representation. While textual datasets provide fine-grained semantic representations, spoken dialogue datasets fall behind. This paper provides insights into automatic enhancement of spoken dialogue datasets' semantic representations. Our contributions are three fold: (1) assess the relevance of Large Language Model fine-tuning, (2) evaluate the knowledge captured by the produced annotations and (3) highlight semi-automatic annotation implications.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 26 条
[21]  
Soltau H., 2023, P 11 DIAL SYST TECHN
[22]   STOP: A DATASET FOR SPOKEN TASK ORIENTED SEMANTIC PARSING [J].
Tomasello, Paden ;
Shrivastava, Akshat ;
Lazar, Daniel ;
Hsu, Po-Chun ;
Le, Duc ;
Sagar, Adithya ;
Elkahky, Ali ;
Copet, Jade ;
Hsu, Wei-Ning ;
Adi, Yossi ;
Algayres, Robin ;
Nguyen, Tu Ahn ;
Dupoux, Emmanuel ;
Zettlemoyer, Luke ;
Mohamed, Abdelrahman .
2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, :991-998
[23]  
Tur G., 2011, SLU in commercial and research spoken dialogue systems, DOI [10.1002/9781119992691.ch7, DOI 10.1002/9781119992691.CH7]
[24]  
Xu ZW, 2025, Arxiv, DOI arXiv:2401.11817
[25]   A Survey on Deep Semi-Supervised Learning [J].
Yang, Xiangli ;
Song, Zixing ;
King, Irwin ;
Xu, Zenglin .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) :8934-8954
[26]  
Zhang YY, 2025, Arxiv, DOI [arXiv:2403.00165, 10.48550/ARXIV.2403.00165]