Dynamics of a New Four-Thirds-Degree Sub-Quadratic Lorenz-like System

被引:2
作者
Ke, Guiyao [1 ]
Pan, Jun [2 ]
Hu, Feiyu [3 ]
Wang, Haijun [4 ]
机构
[1] Zhejiang Guangsha Vocat & Tech Univ Construct, Sch Informat, Dongyang 322100, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Dept Big Data Sci, Hangzhou 310023, Peoples R China
[3] Ritsumeikan Asia Pacific Univ, Coll Sustainabil & Tourism, Beppu, Oita 8748577, Japan
[4] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
generalization of hilbert's 16th problem; sub-quadratic Lorenz-like system; heteroclinic orbit; Lyapunov function; HETEROCLINIC ORBITS; CHEN;
D O I
10.3390/axioms13090625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Aiming to explore the subtle connection between the number of nonlinear terms in Lorenz-like systems and hidden attractors, this paper introduces a new simple sub-quadratic four-thirds-degree Lorenz-like system, where x(center dot)=a(y-x), y(center dot)=cx-x3z, z(center dot)=-bz+x3y, and uncovers the following property of these systems: decreasing the powers of the nonlinear terms in a quadratic Lorenz-like system where x(center dot)=a(y-x), y(center dot)=cx-xz, z(center dot)=-bz+xy, may narrow, or even eliminate the range of the parameter c for hidden attractors, but enlarge it for self-excited attractors. By combining numerical simulation, stability and bifurcation theory, most of the important dynamics of the Lorenz system family are revealed, including self-excited Lorenz-like attractors, Hopf bifurcation and generic pitchfork bifurcation at the origin, singularly degenerate heteroclinic cycles, degenerate pitchfork bifurcation at non-isolated equilibria, invariant algebraic surface, heteroclinic orbits and so on. The obtained results may verify the generalization of the second part of the celebrated Hilbert's sixteenth problem to some degree, showing that the number and mutual disposition of attractors and repellers may depend on the degree of chaotic multidimensional dynamical systems.
引用
收藏
页数:16
相关论文
共 38 条
  • [1] Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
  • [2] Chen GR, 2024, Arxiv, DOI arXiv:2006.04066
  • [3] Dynamics of a hyperchaotic Lorenz-type system
    Chen, Yuming
    Yang, Qigui
    [J]. NONLINEAR DYNAMICS, 2014, 77 (03) : 569 - 581
  • [4] Creation of Three-Scroll Hidden Conservative Lorenz-Like Chaotic Flows
    Ke, Guiyao
    [J]. ADVANCED THEORY AND SIMULATIONS, 2024, 7 (09)
  • [5] Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I
    Hiroshi Kokubu
    Robert Roussarie
    [J]. Journal of Dynamics and Differential Equations, 2004, 16 (2) : 513 - 557
  • [6] Kuzenetsov Y.A., 2004, Elements of Applied Bifurcation Theory, VVolume 112
  • [7] The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension
    Kuznetsov, N., V
    Mokaev, T. N.
    Kuznetsova, O. A.
    Kudryashova, E., V
    [J]. NONLINEAR DYNAMICS, 2020, 102 (02) : 713 - 732
  • [8] On differences and similarities in the analysis of Lorenz, Chen, and Lu systems
    Leonov, G. A.
    Kuznetsov, N. V.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 334 - 343
  • [9] Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences
    Letellier, Christophe
    Mendes, Eduardo M. A. M.
    Malasoma, Jean-Marc
    [J]. PHYSICAL REVIEW E, 2023, 108 (04)
  • [10] On homoclinic and heteroclinic orbits of Chen's system
    Li, Tiecheng
    Chen, Guoting
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 3035 - 3041