Enhancing Visual Odometry with Estimated Scene Depth: Leveraging RGB-D Data with Deep Learning

被引:0
作者
Kostusiak, Aleksander [1 ]
Skrzypczynski, Piotr [1 ]
机构
[1] Poznan Univ Tech, Inst Robot & Machine Intelligence, Ul Piotrowo 3A, PL-60965 Poznan, Poland
关键词
visual odometry; RGB-D cameras; depth estimation; deep learning; particle swarm optimization; NAVIGATION; 1ST;
D O I
10.3390/electronics13142755
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in visual odometry (VO) systems have benefited from the widespread use of affordable RGB-D cameras, improving indoor localization and mapping accuracy. However, older sensors like the Kinect v1 face challenges due to depth inaccuracies and incomplete data. This study compares indoor VO systems that use RGB-D images, exploring methods to enhance depth information. We examine conventional image inpainting techniques and a deep learning approach, utilizing newer depth data from devices like the Kinect v2. Our research highlights the importance of refining data from lower-quality sensors, which is crucial for cost-effective VO applications. By integrating deep learning models with richer context from RGB images and more comprehensive depth references, we demonstrate improved trajectory estimation compared to standard methods. This work advances budget-friendly RGB-D VO systems for indoor mobile robots, emphasizing deep learning's role in leveraging connections between image appearance and depth data.
引用
收藏
页数:20
相关论文
共 50 条
[1]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[2]  
Annunziato M., 2000, P EUR S INT TECHN ES, P325
[3]  
Atapour-Abarghouei A., 2019, RGB-D Image Analysis and Processing, P15
[4]  
Atapour-Abarghouei A, 2016, INT C PATT RECOG, P2813, DOI 10.1109/ICPR.2016.7900062
[5]  
Ayoppan A., 2019, Int. J. Adv. Trends Comput. Sci. Eng, V8, P159, DOI [10.30534/ijatcse/2019/2581.62019, DOI 10.30534/IJATCSE/2019/2581.62019]
[6]  
Belter D., 2014, P COMP VIS ACCV 2014, P407, DOI [10.1007/978-3-319-16808-128, DOI 10.1007/978-3-319-16808-128]
[7]  
Bertalmío M, 2001, PROC CVPR IEEE, P355
[8]   Deep Depth Completion of Low-cost Sensor Indoor RGB-D using Euclidean Distance-based Weighted Loss and Edge-aware Refinement [J].
Castro, Augusto R. ;
Grassi Jr, Valdir ;
Ponti, Moacir A. .
PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, :204-212
[9]   Kinect Depth Recovery Using a Color-Guided, Region-Adaptive, and Depth-Selective Framework [J].
Chen, Chongyu ;
Cai, Jianfei ;
Zheng, Jianmin ;
Cham, Tat Jen ;
Shi, Guangming .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (02)
[10]  
Cheng AQ, 2024, Arxiv, DOI arXiv:2402.14354