A spatial sixth-order numerical scheme for solving fractional partial differential equation

被引:24
作者
Zhang, Xindong [1 ]
Feng, Yuelong [2 ]
Luo, Ziyang [3 ]
Liu, Juan [1 ]
机构
[1] Guizhou Univ Finance & Econ, Coll Big Data Stat, Guiyang 550025, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Xinjiang, Peoples R China
[3] Xinjiang Inst Engn, Sch Math & Phys, Urumqi 830023, Peoples R China
关键词
Time-fractional diffusion equation; Caputo-Fabrizio fractional derivative; Finite difference method; Compact difference scheme; DIFFUSION EQUATION; ELEMENT-METHOD;
D O I
10.1016/j.aml.2024.109265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spatial sixth-order numerical scheme for solving the time-fractional diffusion equation (TFDE) is proposed. The convergence order of the constructed numerical scheme is O(tau(2) + h(6)), where tau and h are the temporal and spatial step sizes, respectively. The stability and error estimation of proposed scheme are given by using Fourier method. Some numerical examples are studied to demonstrate the correctness and effectiveness of the scheme and validate the theoretical analysis.
引用
收藏
页数:7
相关论文
共 27 条
[1]   High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options [J].
Abdi, N. ;
Aminikhah, H. ;
Sheikhani, A. H. Refahi .
CHAOS SOLITONS & FRACTALS, 2022, 162
[2]   A high-order L2 type difference scheme for the time-fractional diffusion equation [J].
Alikhanov, Anatoly A. ;
Huang, Chengming .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
[4]  
Caputo M., 2015, PROGR FRACTIONAL DIF, V1, P73, DOI DOI 10.12785/PFDA/010201
[5]   A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem [J].
Carrer, J. A. M. ;
Solheid, B. S. ;
Trevelyan, J. ;
Seaid, M. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 :132-144
[6]   High-Order Compact Difference Schemes for the Modified Anomalous Subdiffusion Equation [J].
Ding, Hengfei ;
Li, Changpin .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) :213-242
[7]   More generalized groundwater model with space-time caputo Fabrizio fractional differentiation [J].
Djida, Jean-Daniel ;
Atangana, Abdon .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) :1616-1627
[8]   A kernel-based method for solving the time-fractional diffusion equation [J].
Fardi, Mojtaba .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) :2719-2733
[9]   A kernel-based pseudo-spectral method for multi-term and distributed order time-fractional diffusion equations [J].
Fardi, Mojtaba .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) :2630-2651
[10]   Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation [J].
Firoozjaee, M. A. ;
Jafari, H. ;
Lia, A. ;
Baleanu, D. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :367-373