Note on normalized solutions to a kind of fractional Schro<spacing diaeresis>dinger equation with a critical nonlinearity

被引:0
作者
Sun, Xizheng [1 ]
Han, Zhiqing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
nonlinear fractional Schro<spacing diaeresis>dinger equation; normalized solutions; critical nonlinearity; OBSTACLE PROBLEM; GROUND-STATES; EXISTENCE; REGULARITY;
D O I
10.3934/math.20241052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study normalized solutions of the fractional Schro<spacing diaeresis>dinger equation with a critical nonlinearity { (-Delta)(s)u = lambda u + |u|p(-2) u + |u|(2 & lowast;s-2) u,x is an element of R-N , integral R-N u(2) dx = a(2), u is an element of H-s (R-N), where N >= 2, s is an element of (0,1), a > 0, 2 < p < 2(s)(& lowast;)- (2N)|(N-2s) and (-Delta)(s) is the fractional Laplace operator. In the purely L-2-subcritical perturbation case 2 < p < 2 + (4s)|(N) , we prove the existence of a second normalized solution under some conditions on a , p , s , and N . This is a continuation of our previous work ( Z. Angew. Math. Phys. , 73 (2022) 149) where only one solution is obtained.
引用
收藏
页码:21641 / 21655
页数:15
相关论文
共 27 条