Note on normalized solutions to a kind of fractional Schro<spacing diaeresis>dinger equation with a critical nonlinearity

被引:0
作者
Sun, Xizheng [1 ]
Han, Zhiqing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
nonlinear fractional Schro<spacing diaeresis>dinger equation; normalized solutions; critical nonlinearity; OBSTACLE PROBLEM; GROUND-STATES; EXISTENCE; REGULARITY;
D O I
10.3934/math.20241052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study normalized solutions of the fractional Schro<spacing diaeresis>dinger equation with a critical nonlinearity { (-Delta)(s)u = lambda u + |u|p(-2) u + |u|(2 & lowast;s-2) u,x is an element of R-N , integral R-N u(2) dx = a(2), u is an element of H-s (R-N), where N >= 2, s is an element of (0,1), a > 0, 2 < p < 2(s)(& lowast;)- (2N)|(N-2s) and (-Delta)(s) is the fractional Laplace operator. In the purely L-2-subcritical perturbation case 2 < p < 2 + (4s)|(N) , we prove the existence of a second normalized solution under some conditions on a , p , s , and N . This is a continuation of our previous work ( Z. Angew. Math. Phys. , 73 (2022) 149) where only one solution is obtained.
引用
收藏
页码:21641 / 21655
页数:15
相关论文
共 27 条
  • [1] Applebaum D., 2004, NOTICES AM MATH SOC, V51, P1336
  • [2] Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrodinger systems
    Bartsch, Thomas
    Li, Houwang
    Zou, Wenming
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
  • [3] Multiple normalized solutions for a competing system of Schrodinger equations
    Bartsch, Thomas
    Soave, Nicola
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
  • [4] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [5] Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
  • [6] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461
  • [7] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [8] Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent
    Chen, Zhijie
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 515 - 551
  • [9] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [10] Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian
    Felmer, Patricio
    Quaas, Alexander
    Tan, Jinggang
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) : 1237 - 1262