Refinements of Pólya-SzegŐ and Chebyshev type inequalities via different fractional integral operators

被引:0
|
作者
Ahmad, Ayyaz [1 ]
Anwar, Matloob [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Nat Sci, Islamabad, Pakistan
关键词
P & oacute; lya-Szeg & odblac; inequality; Chebyshev inequality; Saigo fractional integral operator; q-Saigo fractional integral operator; POLYA-SZEGO;
D O I
10.1016/j.heliyon.2024.e35057
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various differential and integral operators have been introduced and applied for the generalization of several integral inequalities. The purpose of this article is to create a more generalized fractional integral operator of Saigo type. This operator will be used alongwith the existing Saigo type and Q-Saigo type fractional integral operators to establish extended and generalized versions of several inequalities, including P & oacute;lya-Szeg & odblac; and Chebyshev type inequalities.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Advancements in Bullen-type inequalities via fractional integral operators and their applications
    Samraiz, Muhammad
    Hassan, Zohaib
    Naheed, Saima
    Vivas-Cortez, Miguel
    Ali, Rifaqat
    Lamoudan, Tarik
    HELIYON, 2024, 10 (17)
  • [32] Some New Chebyshev and Gruss-type Integral Inequalities for Saigo Fractional Integral Operators and Their q-analogues
    Yang, Wengui
    FILOMAT, 2015, 29 (06) : 1269 - 1289
  • [33] On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities
    Vivas-Cortez, Miguel
    Mohammed, Pshtiwan O.
    Hamed, Y. S.
    Kashuri, Artion
    Hernandez, Jorge E.
    Macias-Diaz, Jorge E.
    AIMS MATHEMATICS, 2022, 7 (06): : 10256 - 10275
  • [34] New Hadamard-type integral inequalities via a general form of fractional integral operators
    Butt, Saad Ihsan
    Yousaf, Saba
    Akdemir, Ahmet Ocak
    Dokuyucu, Mustafa Ali
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [35] Some inequalities via fractional conformable integral operators
    Nisar, Kottakkaran Sooppy
    Tassaddiq, Asifa
    Rahman, Gauhar
    Khan, Aftab
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [36] Some inequalities via fractional conformable integral operators
    Kottakkaran Sooppy Nisar
    Asifa Tassaddiq
    Gauhar Rahman
    Aftab Khan
    Journal of Inequalities and Applications, 2019
  • [37] Different type parameterized inequalities via generalized integral operators with applications
    Kashuri, Artion
    Liko, Rozana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (03): : 423 - 440
  • [38] Sharp Weak Type Inequalities for Fractional Integral Operators
    Rodrigo Bañuelos
    Adam Osȩkowski
    Potential Analysis, 2017, 47 : 103 - 121
  • [39] Sharp Weak Type Inequalities for Fractional Integral Operators
    Banuelos, Rodrigo
    Osekowski, Adam
    POTENTIAL ANALYSIS, 2017, 47 (01) : 103 - 121
  • [40] Several new integral inequalities via Caputo fractional integral operators
    Ozdemir, M. Emin
    Butt, Saad Ihsan
    Ekinci, Alper
    Nadeem, Mehroz
    FILOMAT, 2023, 37 (06) : 1843 - 1854