Refinements of Pólya-SzegŐ and Chebyshev type inequalities via different fractional integral operators

被引:0
|
作者
Ahmad, Ayyaz [1 ]
Anwar, Matloob [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Nat Sci, Islamabad, Pakistan
关键词
P & oacute; lya-Szeg & odblac; inequality; Chebyshev inequality; Saigo fractional integral operator; q-Saigo fractional integral operator; POLYA-SZEGO;
D O I
10.1016/j.heliyon.2024.e35057
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various differential and integral operators have been introduced and applied for the generalization of several integral inequalities. The purpose of this article is to create a more generalized fractional integral operator of Saigo type. This operator will be used alongwith the existing Saigo type and Q-Saigo type fractional integral operators to establish extended and generalized versions of several inequalities, including P & oacute;lya-Szeg & odblac; and Chebyshev type inequalities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] New refinements of Chebyshev–Pólya–Szegö-type inequalities via generalized fractional integral operators
    Saad Ihsan Butt
    Ahmet Ocak Akdemir
    Muhammad Yousaf Bhatti
    Muhammad Nadeem
    Journal of Inequalities and Applications, 2020
  • [2] On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Dumitru Baleanu
    Muhammad Samraiz
    Sajid Iqbal
    Advances in Difference Equations, 2020
  • [3] New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Bhatti, Muhammad Yousaf
    Nadeem, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [4] On Pólya–Szegö and Čebyšev type inequalities via generalized k-fractional integrals
    Saima Rashid
    Fahd Jarad
    Humaira Kalsoom
    Yu-Ming Chu
    Advances in Difference Equations, 2020
  • [5] Pólya-Szegö type inequality and imbedding theorems for weighted Sobolev spaces
    Nga, N. Q.
    Tri, N. M.
    Tuan, D. A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [6] Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators
    Baleanu, D.
    Purohit, S. D.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators
    Akdemir, Ahmet Ocak
    Butt, Saad Ihsan
    Nadeem, Muhammad
    Ragusa, Maria Alessandra
    MATHEMATICS, 2021, 9 (02) : 1 - 11
  • [8] New Refinements of the Inequalities of Hermite-Hadamard-Fejer Type via Fractional Integral Operators
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [9] Chebyshev type inequalities involving extended generalized fractional integral operators
    Set, Erhan
    Ozdemir, M. Emin
    Demirbas, Sevdenur
    AIMS MATHEMATICS, 2020, 5 (04): : 3573 - 3583
  • [10] CHEBYSHEV TYPE INEQUALITIES INVOLVING GENERALIZED KATUGAMPOLA FRACTIONAL INTEGRAL OPERATORS
    Set, Erhan
    Choi, Junesang
    Mumcu, Ilker
    TAMKANG JOURNAL OF MATHEMATICS, 2019, 50 (04): : 381 - 390