A NOTE ON SIGN-CHANGING SOLUTIONS TO SUPERCRITICAL YAMABE-TYPE EQUATIONS

被引:0
作者
Julio-batalla, Jurgen [1 ]
机构
[1] Univ Ind Santander, Bucaramanga, Colombia
关键词
Yamabe equation; isoparametric functions; Sobolev inequalities; mountain pass theorem; nodal solutions; NODAL SOLUTIONS; ISOPARAMETRIC FUNCTIONS;
D O I
10.3934/cpaa.2024082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a closed Riemannian manifold ( M-n , g ), we consider the Yamabe-type equation -triangle(g)u + hu = |u|(q-1) u , where q > 1 and h is a positive C 1- function. We assume that M admits a proper isoparametric function f with focal submanifolds of positive dimension. If k > 0 is the minimum of the dimensions of the focal submanifolds of f , we let q & lowast; = n-k +2/n-k- 2 .We prove the existence of infinite f-invariant sign-changing solutions to the equation when 1 < q < q & lowast; .
引用
收藏
页码:140 / 152
页数:13
相关论文
共 28 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   The second Yamabe invariant [J].
Ammann, B ;
Humbert, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (02) :377-412
[3]  
[Anonymous], 1975, Tohoku Math. J.
[4]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[5]   Global bifurcation techniques for Yamabe type equations on Riemannian manifolds [J].
Betancourt de la Parra, Alejandro ;
Julio-Batalla, Jurgen ;
Petean, Jimmy .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[6]   MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM ON COLLAPSING RIEMANNIAN SUBMERSIONS [J].
Bettiol, Renato G. ;
Piccione, Paolo .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 266 (01) :1-21
[7]   Low energy nodal solutions to the Yamabe equation [J].
Carlos Fernandez, Juan ;
Petean, Jimmy .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) :6576-6597
[8]   SUPERCRITICAL ELLIPTIC PROBLEMS ON THE ROUND SPHERE AND NODAL SOLUTIONS TO THE YAMABE PROBLEM IN PROJECTIVE SPACES [J].
Carlos Fernandez, Juan ;
Palmas, Oscar ;
Petean, Jimmy .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) :2495-2514
[9]   On bifurcation of solutions of the Yamabe problem in product manifolds [J].
de Lima, L. L. ;
Piccione, P. ;
Zedda, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02) :261-277
[10]   Large energy entire solutions for the Yamabe equation [J].
del Pino, Manuel ;
Musso, Monica ;
Pacard, Frank ;
Pistoia, Angela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) :2568-2597