Federated Multiagent Deep Reinforcement Learning for Intelligent IoT Wireless Communications: Overview and Challenges

被引:0
作者
De Oliveira, Hugo [1 ,2 ]
Kaneko, Megumi [3 ]
Boukhatem, Lila [4 ]
机构
[1] Paris Saclay Univ, Dual Degree Program, F-91190 Gif Sur Yvette, France
[2] Grad Univ Adv Studies SOKENDAI, Tokyo 1018430, Japan
[3] Natl Inst Informat, Tokyo 1018430, Japan
[4] Interdisciplinary Lab Numer Sci LISN, F-91190 Gif Sur Yvette, France
来源
IEEE VEHICULAR TECHNOLOGY MAGAZINE | 2024年
关键词
Privacy; Wireless communication; Training; Performance evaluation; Industrial Internet of Things; Delays; Data privacy;
D O I
10.1109/MVT.2024.3451191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The soaring number of connected Internet of Things (IoT) devices and their extreme quality of service (QoS) demands in terms of rate, delay, and reliability pose multiple issues for beyond-5G (B5G) and 6G systems. As devices, applications, and mobile interfaces become increasingly diverse, optimizing the utilization of the scarce spectrum will be ever more challenging. Mathematical optimization techniques alone appear insufficient to provide viable solutions for such complex networks in real time.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 15 条
  • [1] Decentralized Aggregation for Energy-Efficient Federated Learning via D2D Communications
    Al-Abiad, Mohammed S.
    Obeed, Mohanad
    Hossain, Md. Jahangir
    Chaaban, Anas
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (06) : 3333 - 3351
  • [2] Federated Multi-Agent Deep Reinforcement Learning (Fed-MADRL) for Dynamic Spectrum Access
    Chang, Hao-Hsuan
    Song, Yifei
    Doan, Thinh T.
    Liu, Lingjia
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5337 - 5348
  • [3] Deep Reinforcement Learning-Aided Optimization of Multi-Interface Allocation for Short-Packet Communications
    De Oliveira, Hugo
    Kaneko, Megumi
    Boukhatem, Lila
    Fukuda, Ellen Hidemi
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (03) : 738 - 753
  • [4] Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled Wireless Networks: A Tutorial
    Feriani, Amal
    Hossain, Ekram
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (02): : 1226 - 1252
  • [5] Federated Learning: A signal processing perspective
    Gafni, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    Poor, H. Vincent
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (03) : 14 - 41
  • [6] Arivazhagan MG, 2019, Arxiv, DOI arXiv:1912.00818
  • [7] Wireless Multi-Interface Connectivity with Deep Learning-Enabled User Devices: An Energy Efficiency Perspective
    Kaneko, Megumi
    Ly Dinh, Thi Ha
    Kawamura, Kenichi
    Moriyama, Takatsune
    Takatori, Yasushi
    [J]. IEEE NETWORK, 2023, 37 (03): : 132 - 139
  • [8] Dynamic Channel Access and Power Control in Wireless Interference Networks via Multi-Agent Deep Reinforcement Learning
    Lu, Ziyang
    Zhong, Chen
    Gursoy, M. Cenk
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 1588 - 1601
  • [9] Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems
    Luo, Ruyu
    Ni, Wanli
    Tian, Hui
    Cheng, Julian
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (11) : 12321 - 12326
  • [10] McMahan HB, 2017, PR MACH LEARN RES, V54, P1273