Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

被引:8
|
作者
Shah, Abzer K. Pakkir [1 ,2 ]
Walter, Axel [1 ,2 ,3 ]
Ottosson, Filip [4 ]
Russo, Francesco [4 ]
Navarro-Diaz, Marcelo [2 ]
Boldt, Judith [1 ,5 ,6 ]
Kalinski, Jarmo-Charles J. [1 ,7 ]
Kontou, Eftychia Eva [1 ,8 ]
Elofson, James [9 ]
Polyzois, Alexandros [1 ,10 ,11 ]
Gonzalez-Marin, Carolina [1 ,12 ]
Farrell, Shane [13 ,14 ]
Aggerbeck, Marie R. [1 ,15 ]
Pruksatrakul, Thapanee [1 ,16 ]
Chan, Nathan [17 ]
Wang, Yunshu [17 ]
Poechhacker, Magdalena [1 ,18 ]
Brungs, Corinna [19 ]
Camara, Beatriz [20 ]
Caraballo-Rodriguez, Andres Mauricio [21 ]
Cumsille, Andres [20 ]
de Oliveira, Fernanda [21 ,22 ]
Duehrkop, Kai [23 ]
El Abiead, Yasin [21 ]
Geibel, Christian [2 ]
Graves, Lana G. [24 ,25 ]
Hansen, Martin [15 ]
Heuckeroth, Steffen [26 ]
Knoblauch, Simon [2 ]
Kostenko, Anastasiia [9 ]
Kuijpers, Mirte C. M. [27 ]
Mildau, Kevin [1 ,28 ,29 ]
Papadopoulos Lambidis, Stilianos [2 ]
Gomes, Paulo Wender Portal [21 ]
Schramm, Tilman [2 ,30 ]
Steuer-Lodd, Karoline [2 ,30 ]
Stincone, Paolo [2 ]
Tayyab, Sibgha [2 ]
Vitale, Giovanni Andrea [2 ]
Wagner, Berenike C. [2 ]
Xing, Shipei [21 ]
Yazzie, Marquis T. [9 ]
Zuffa, Simone [21 ,31 ]
de Kruijff, Martinus [32 ]
Beemelmanns, Christine [32 ,33 ]
Link, Hannes [2 ]
Mayer, Christoph [2 ]
van der Hooft, Justin J. J. [1 ,29 ,34 ]
Damiani, Tito [19 ]
Pluskal, Tomas [19 ]
机构
[1] Internet, Virtual Multi Lab, Riverside, CA 92507 USA
[2] Univ Tubingen, Interfac Inst Microbiol & Infect Med, Tubingen, Germany
[3] Univ Tubingen, Dept Comp Sci, Appl Bioinformat, Tubingen, Germany
[4] Statens Serum Inst, Danish Ctr Neonatal Screening, Dept Congenital Disorders, Sect Clin Mass Spectrometry, Copenhagen, Denmark
[5] Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany
[6] German Ctr Infect Res, Partner Site Braunschweig Hannover, Braunschweig, Germany
[7] Rhodes Univ, Dept Biochem & Microbiol, Makhanda, South Africa
[8] Tech Univ Denmark, Novo Nord Fdn Biosustainabil, Kongens Lyngby, Denmark
[9] Univ Denver, Dept Chem & Biochem, Denver, CO USA
[10] Cornell Univ, Boyce Thompson Inst, Ithaca, NY USA
[11] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY USA
[12] Univ EAFIT, Medellin, Antioquia, Colombia
[13] Bigelow Lab Ocean Sci, E Boothbay, ME USA
[14] Univ Maine, Darling Marine Ctr, Sch Marine Sci, Walpole, ME 04573 USA
[15] Aarhus Univ, Dept Environm Sci, Roskilde, Denmark
[16] Thailand Sci Pk, Natl Ctr Genet Engn & Biotechnol, Natl Sci & Technol Dev Agcy, Pathum Thani, Thailand
[17] Univ Calif Riverside, Dept Comp Sci, Riverside, CA USA
[18] Univ Vienna, Dept Food Chem & Toxicol, Vienna, Austria
[19] Czech Acad Sci, Inst Organ Chem & Biochem, Prague, Czech Republic
[20] Univ Tecn Federico Santa Maria, Ctr Biotecnol DAL, Lab Microbiol Mol & Biotecnol Ambiental, Valparaiso, Chile
[21] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, San Diego, CA USA
[22] Univ Sao Paulo, Engn Sch Lorena, Dept Biotechnol, Lorena, SP, Brazil
[23] Univ Jena, Dept Bioinformat, Jena, Germany
[24] Univ Tubingen, Dept Environm Syst Anal, Tubingen, Germany
[25] Leibniz Inst Freshwater Ecol & Inland Fisheries, Berlin, Germany
[26] Univ Munster, Inst Inorgan & Analyt Chem, Munster, Germany
[27] Univ Calif San Diego, Dept Ecol Behav & Evolut, San Diego, CA USA
[28] Univ Vienna, Dept Analyt Chem, Vienna, Austria
[29] Wageningen Univ & Res, Bioinformat Grp, Wageningen, Netherlands
[30] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA
[31] Univ Calif San Diego, Collaborat Mass Spectrometry Innovat Ctr, Skaggs Sch Pharm & Pharmaceut Sci, San Diego, CA 92093 USA
[32] Helmholtz Inst Pharmaceut Res Saarland, Helmholtz Ctr Infect Res, Saarbrucken, Germany
[33] Saarland Univ, Saarbrucken, Germany
[34] Univ Johannesburg, Dept Biochem, Johannesburg, South Africa
[35] Univ Copenhagen, Dept Nutr Exercise & Sports, Frederiksberg, Denmark
基金
巴西圣保罗研究基金会; 美国国家卫生研究院;
关键词
MASS-SPECTROMETRY DATA; CHROMATOGRAPHY/MASS SPECTROMETRY; UNTARGETED METABOLOMICS; MULTIVARIATE-ANALYSIS; DRIFT CORRECTION; GENOMIC DATA; R PACKAGE; GC-MS; DISCOVERY; NORMALIZATION;
D O I
10.1038/s41596-024-01046-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks (https://github.com/Functional-Metabolomics-Lab/FBMN-STATS). Additionally, the protocol is accompanied by a web application with a graphical user interface (https://fbmn-statsguide.gnps2.org/) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools. Feature-based molecular networking (FBMN) is a popular workflow for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data analysis.This protocol provides a detailed guide, code (R, Python and QIIME2) and a web application for FBMN data integration, clean-up and advanced statistical analysis, allowing new and experienced users to uncover molecular insights from their non-targeted metabolomics data. Feature-based molecular networking is used to analyze non-targeted liquid chromatography-tandem mass spectrometry metabolomics data. This protocol includes instructions, ready-made code and a web app (https://fbmn-statsguide.gnps2.org/) for statistical analysis of feature-based molecular networking results.
引用
收藏
页码:92 / 162
页数:74
相关论文
共 39 条
  • [1] Feature-based molecular networking in the GNPS analysis environment
    Nothias, Louis-Felix
    Petras, Daniel
    Schmid, Robin
    Duehrkop, Kai
    Rainer, Johannes
    Sarvepalli, Abinesh
    Protsyuk, Ivan
    Ernst, Madeleine
    Tsugawa, Hiroshi
    Fleischauer, Markus
    Aicheler, Fabian
    Aksenov, Alexander A.
    Alka, Oliver
    Allard, Pierre-Marie
    Barsch, Aiko
    Cachet, Xavier
    Caraballo-Rodriguez, Andres Mauricio
    Da Silva, Ricardo R.
    Dang, Tam
    Garg, Neha
    Gauglitz, Julia M.
    Gurevich, Alexey
    Isaac, Giorgis
    Jarmusch, Alan K.
    Kamenik, Zdenek
    Kang, Kyo Bin
    Kessler, Nikolas
    Koester, Irina
    Korf, Ansgar
    Le Gouellec, Audrey
    Ludwig, Marcus
    Martin H., Christian
    McCall, Laura-Isobel
    McSayles, Jonathan
    Meyer, Sven W.
    Mohimani, Hosein
    Morsy, Mustafa
    Moyne, Oriane
    Neumann, Steffen
    Neuweger, Heiko
    Nguyen, Ngoc Hung
    Nothias-Esposito, Melissa
    Paolini, Julien
    Phelan, Vanessa V.
    Pluskal, Tomas
    Quinn, Robert A.
    Rogers, Simon
    Shrestha, Bindesh
    Tripathi, Anupriya
    van der Hooft, Justin J. J.
    NATURE METHODS, 2020, 17 (09) : 905 - +
  • [2] Non-Targeted Metabolomics Analysis of Small Molecular Metabolites in Refrigerated Goose Breast Meat
    Miao, Dongzhi
    Wu, Xuebei
    Zuo, Kui
    Chen, Jing
    Wang, Ying
    Pu, Junhua
    Yang, Haiming
    Wang, Zhiyue
    VETERINARY SCIENCES, 2024, 11 (12)
  • [3] Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data
    Reisetter, Anna C.
    Muehlbauer, Michael J.
    Bain, James R.
    Nodzenski, Michael
    Stevens, Robert D.
    Ilkayeva, Olga
    Metzger, Boyd E.
    Newgard, Christopher B.
    Lowe, William L., Jr.
    Scholtens, Denise M.
    BMC BIOINFORMATICS, 2017, 18
  • [4] Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data
    Anna C. Reisetter
    Michael J. Muehlbauer
    James R. Bain
    Michael Nodzenski
    Robert D. Stevens
    Olga Ilkayeva
    Boyd E. Metzger
    Christopher B. Newgard
    William L. Lowe
    Denise M. Scholtens
    BMC Bioinformatics, 18
  • [5] Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q Exactive Platform
    Stincone, Paolo
    Shah, Abzer Pakkir K.
    Schmid, Robin
    Graves, Lana G.
    Lambidis, Stilianos P.
    Torres, Ralph R.
    Xia, Shu-Ning
    Minda, Vidit
    Aron, Allegra T.
    Wang, Mingxun
    Hughes, Chambers C.
    Petras, Daniel
    ANALYTICAL CHEMISTRY, 2023, 95 (34) : 12673 - 12682
  • [6] Metabolomics-based non-targeted screening analysis of 34 PPCPs in bovine and piscine muscles
    Xue, Weifeng
    Zhang, Haiqin
    Wang, Mei
    Liu, Ying
    Liu, Mengyao
    Shen, Baozhen
    ANALYTICAL METHODS, 2022, 14 (03) : 233 - 240
  • [7] Feature Selection Pipelines with Classification for Non-targeted Metabolomics Combining the Neural Network and Genetic Algorithm
    Lisitsyna, Anna
    Moritz, Franco
    Liu, Youzhong
    Al Sadat, Loubna
    Hauner, Hans
    Claussnitzer, Melina
    Schmitt-Kopplin, Philippe
    Forcisi, Sara
    ANALYTICAL CHEMISTRY, 2022, 94 (14) : 5474 - 5482
  • [8] Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation
    De Souza, Leonardo Perez
    Alseekh, Saleh
    Brotman, Yariv
    Fernie, Alisdair R.
    EXPERT REVIEW OF PROTEOMICS, 2020, 17 (04) : 243 - 255
  • [9] Feature-Based Molecular Networking Combined with Multivariate Analysis for the Characterization of Glutathione Adducts as a Smoking Gun of Bioactivation
    Jung, Young-Heun
    Kim, Ju-Hyun
    ANALYTICAL CHEMISTRY, 2023, 95 (48) : 17450 - 17457
  • [10] Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis
    Tsugawa, Hiroshi
    Bamba, Takeshi
    Shinohara, Masakazu
    Nishiumi, Shin
    Yoshida, Masaru
    Fukusaki, Eiichiro
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2011, 112 (03) : 292 - 298