Exact chirped solutions and chaotic behaviors of the high-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities

被引:0
作者
Li, Guangjin [1 ]
机构
[1] Northeast Petr Univ, Dept Math, Daqing 163318, Peoples R China
关键词
The high-order nonlinear Schr & ouml; dinger equation; trial equation method; complete discrimination system for polynomial; chirped solution; chaotic behavior; TRAVELING-WAVE SOLUTIONS; SCHRODINGERS EQUATION; SOLITON-SOLUTIONS; CLASSIFICATIONS;
D O I
10.1088/1402-4896/ad6bfe
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain the exact chirped solutions and corresponding nonlinear chirps of the high-order nonlinear Schr & ouml;dinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities based on the trial equation method and the complete discrimination system for polynomial. Specifically, we systematically solve all exact chirped solutions of the equation in its general form. Moreover, we discuss the chaotic behaviors of the model while considering the external perturbation terms.
引用
收藏
页数:16
相关论文
共 58 条
  • [1] Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift
    Alka
    Goyal, Amit
    Gupta, Rama
    Kumar, C. N.
    Raju, Thokala Soloman
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [2] NUMERICAL STUDY OF QUANTIZED VORTEX INTERACTIONS IN THE NONLINEAR SCHRODINGER EQUATION ON BOUNDED DOMAINS
    Bao, Weizhu
    Tang, Qinglin
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (02) : 411 - 439
  • [3] Travelling wave solutions of the non-linear Schrodinger's equation in non-Kerr law media
    Biswas, Anjan
    Milovic, Daniela
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1993 - 1998
  • [4] Colloquium: Non-Markovian dynamics in open quantum systems
    Breuer, Heinz-Peter
    Laine, Elsi-Mari
    Piilo, Jyrki
    Vacchini, Bassano
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
  • [5] Breuer Heinz-Peter, 2002, The Theory of Open Quantum Systems
  • [6] Sharp weights in the Cauchy problem for nonlinear Schrodinger equations with potential
    Carles, Remi
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 2087 - 2094
  • [7] Soliton Solutions of the KP Equation and Application to Shallow Water Waves
    Chakravarty, S.
    Kodama, Y.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2009, 123 (01) : 83 - 151
  • [8] Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrodinger equation
    Choudhuri, Amitava
    Porsezian, K.
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [9] Propagation of chirped periodic and localized waves with higher-order effects through optical fibers
    Daoui, Abdel Kader
    Messouber, Abdelouahab
    Triki, Houria
    Zhou, Qin
    Biswas, Anjan
    Liu, Wenjun
    Alzahrani, Abdullah K.
    Belic, Milivoj R.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 146
  • [10] Drfler W., 2011, Photonic Crystals: Mathematical Analysis and Numerical Approximation