共 42 条
Existence and limit behavior of normalized ground state solutions for a class of non-autonomous Kirchhoff equations
被引:1
作者:
Du, Miao
[1
,2
]
Gao, Xiaohan
[2
]
Tian, Lixin
[1
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
来源:
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
|
2024年
/
75卷
/
05期
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
Kirchhoff equation;
Non-autonomous;
Constrained minimization problem;
Normalized ground state solution;
Limit behavior;
SIGN-CHANGING SOLUTIONS;
POSITIVE SOLUTIONS;
ASYMPTOTIC-BEHAVIOR;
NONTRIVIAL SOLUTIONS;
PRESCRIBED NORM;
MULTIPLICITY;
UNIQUENESS;
WAVES;
D O I:
10.1007/s00033-024-02328-2
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider a class of non-autonomous Kirchhoff equations with two nonnegative potentials in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>N$$\end{document} (N=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N =1,2,3$$\end{document}). Under certain basic assumptions on the potentials, the existence and nonexistence of normalized ground state solutions are classified completely by investigating equivalently the associated L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-constrained minimization problem. Based on some delicate estimates of the corresponding energy functional, the limit behavior of normalized ground state solutions is also analyzed as the prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm goes to infinity. Our main results extend and complement some known related results in the literature.
引用
收藏
页数:25
相关论文