Existence and limit behavior of normalized ground state solutions for a class of non-autonomous Kirchhoff equations

被引:1
作者
Du, Miao [1 ,2 ]
Gao, Xiaohan [2 ]
Tian, Lixin [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Kirchhoff equation; Non-autonomous; Constrained minimization problem; Normalized ground state solution; Limit behavior; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; NONTRIVIAL SOLUTIONS; PRESCRIBED NORM; MULTIPLICITY; UNIQUENESS; WAVES;
D O I
10.1007/s00033-024-02328-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of non-autonomous Kirchhoff equations with two nonnegative potentials in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>N$$\end{document} (N=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N =1,2,3$$\end{document}). Under certain basic assumptions on the potentials, the existence and nonexistence of normalized ground state solutions are classified completely by investigating equivalently the associated L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-constrained minimization problem. Based on some delicate estimates of the corresponding energy functional, the limit behavior of normalized ground state solutions is also analyzed as the prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm goes to infinity. Our main results extend and complement some known related results in the literature.
引用
收藏
页数:25
相关论文
共 42 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[4]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[5]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[6]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[7]   Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases [J].
Chen, Sitong ;
Radulescu, Vicentiu D. ;
Tang, Xianhua .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) :773-806
[8]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[9]   STATIONARY WAVES WITH PRESCRIBED L2-NORM FOR THE PLANAR SCHRODINGER-POISSON SYSTEM [J].
Cingolani, Silvia ;
Jeanjean, Louis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) :3533-3568
[10]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527