Large-scale data processing platform for laser absorption tomography

被引:1
作者
Zhou, Minqiu [1 ]
Zhang, Rui [1 ]
Chen, Yuan [1 ]
Fu, Yalei [1 ]
Xia, Jiangnan [1 ]
Upadhyay, Abhishek [1 ]
Liu, Chang [1 ]
机构
[1] Univ Edinburgh, Inst Imaging Data & Commun, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
laser absorption tomography; wavelength modulation spectroscopy; signal processing; parallel computing; SPECTROSCOPY;
D O I
10.1088/1361-6501/ad6c6f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser absorption tomography (LAT) has been widely employed to capture two/three-dimensional reactive flow-field parameters with a penetrating spatiotemporal resolution. In industrial environments, LAT is generally implemented by measuring multiple, e.g. 30 to more than 100, wavelength modulated laser transmissions at high imaging rates, e.g. tens to thousands of frames per second (fps). A short-period LAT experiment can generate extensive load of data, which require massive computational source and time for data post-processing. In this work, a large-scale data processing platform is designed for industrial LAT. The platform significantly speeds up LAT signal processing by introducing a parallel computing architecture. By identifying the discrepancy between the measured and theoretical spectra, the new platform enables indexing of the laser-beam measurements that are disturbed by harsh-environment noise. Such a scheme facilitates effective removal of noise-distorted beams, which can lead to artefacts in the reconstructed images. The designed platform is validated by a lab-based LAT experiment, which is implemented by processing the laser transmissions of a 32-beam LAT sensor working at 250 fps. To process a 60 s LAT experimental dataset, the parallelism enabled by the platform saves computational time by 40.12% compared to the traditional single-thread approach. The error-detection scheme enables the successful accurate identification of noise-distorted measurements, i.e. 0.59% of overall laser-beam measurements that fall out of the physical model.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Relative Entropy Regularized TDLAS Tomography for Robust Temperature Imaging [J].
Bao, Yong ;
Zhang, Rui ;
Enemali, Godwin ;
Cao, Zhang ;
Zhou, Bin ;
McCann, Hugh ;
Liu, Chang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[2]   Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows [J].
Cai, Weiwei ;
Kaminski, Clemens F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 59 :1-31
[3]   Cost-Effective Quasi-Parallel Sensing Instrumentation for Industrial Chemical Species Tomography [J].
Enemali, Godwin ;
Zhang, Rui ;
McCann, Hugh ;
Liu, Chang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (02) :2107-2116
[4]   Hybrid Model-Driven Spectroscopic Network for Rapid Retrieval of Turbine Exhaust Temperature [J].
Fu, Yalei ;
Zhang, Rui ;
Xia, Jiangnan ;
Gough, Andrew ;
Clark, Stuart ;
Upadhyay, Abhishek ;
Enemali, Godwin ;
Armstrong, Ian ;
Ahmed, Ihab ;
Pourkashanian, Mohamed ;
Wright, Paul ;
Ozanyan, Krikor ;
Lengden, Michael ;
Johnstone, Walter ;
Polydorides, Nick ;
McCann, Hugh ;
Liu, Chang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72 :1-10
[5]   Infrared laser-absorption sensing for combustion gases [J].
Goldenstein, Christopher S. ;
Spearrin, R. Mitchell ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 :132-176
[6]   Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes [J].
Goldenstein, Christopher S. ;
Strand, Christopher L. ;
Schultz, Ian A. ;
Sun, Kai ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
APPLIED OPTICS, 2014, 53 (03) :356-367
[7]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[8]   An FPGA-Based On-Chip Neural Network for TDLAS Tomography in Dynamic Flames [J].
Huang, Ang ;
Cao, Zhang ;
Wang, Chenran ;
Wen, Jinting ;
Lu, Fanghao ;
Xu, Lijun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[9]   Frequency-Division Multiplexing and Main Peak Scanning WMS Method for TDLAS Tomography in Flame Monitoring [J].
Huang, Ang ;
Cao, Zhang ;
Zhao, Wenshuai ;
Zhang, Hongyu ;
Xu, Lijun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) :9087-9096
[10]   Perspectives on instrumentation development for chemical species tomography in reactive-flow diagnosis [J].
Liu, Chang ;
McCann, Hugh ;
Xu, Lijun .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)