Semi-supervised learning for explainable few-shot battery lifetime prediction

被引:24
|
作者
Guo, Nanlin [1 ]
Chen, Sihui [2 ]
Tao, Jun [1 ]
Liu, Yang [3 ]
Wan, Jiayu [4 ]
Li, Xin [3 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab Integrated Chips & Syst, Shanghai 200433, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[3] Duke Kunshan Univ, Data Sci Res Ctr, 8 Duke Ave, Kunshan 215316, Jiangsu, Peoples R China
[4] Shanghai Jiao Tong Univ, Global Inst Future Technol, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
关键词
PARTICLE FILTER TECHNIQUE; SYSTEM STATE ESTIMATION; HEALTH ESTIMATION; LITHIUM; PACKS;
D O I
10.1016/j.joule.2024.02.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate prediction of battery lifetime is critical for ensuring timely maintenance and safety of batteries. Although data-driven methods have made significant progress, their model accuracy is often hampered by a scarcity of labeled data. To address this challenge, we developed a semi-supervised learning technique named partial Bayesian co-training (PBCT), enhancing the modeling of battery lifetime prediction. Leveraging the low-cost unlabeled data, our model extracts hidden information to improve the understanding of the underlying data patterns and achieve higher lifetime prediction accuracy. PBCT outperforms existing approaches by up to 21.9% on lifetime prediction accuracy, with negligible overhead for data acquisition. Moreover, our research suggests that incorporating unlabeled data into the training process can help to uncover critical factors that impact battery lifetime, which may be overlooked with a limited number of labeled data alone. The proposed semi-supervised approach sheds light on the future direction for efficient and explainable data-driven battery status estimation.
引用
收藏
页码:1820 / 1836
页数:18
相关论文
共 50 条
  • [1] AffinityNet: Semi-Supervised Few-Shot Learning for Disease Type Prediction
    Ma, Tianle
    Zhang, Aidong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1069 - 1076
  • [2] Task Cooperation for Semi-Supervised Few-Shot Learning
    Ye, Han-Jia
    Li, Xin-Chun
    Zhan, De-Chuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10682 - 10690
  • [3] HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
    Zhmoginov, Andrey
    Sandler, Mark
    Vladymyrov, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [4] Few-shot Object Detection as a Semi-supervised Learning Problem
    Bailer, Werner
    Fassold, Hannes
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 131 - 135
  • [5] An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
    Wei, Xiu-Shen
    Xu, He-Yang
    Zhang, Faen
    Peng, Yuxin
    Zhou, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Semi-Supervised Few-Shot Learning with Prototypical Random Walks
    Ayyad, Ahmed
    Li, Yuchen
    Muaz, Raden
    Albarqouni, Shadi
    Elhoseiny, Mohamed
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 45 - 57
  • [7] SEMI-SUPERVISED FEW-SHOT CLASS-INCREMENTAL LEARNING
    Cui, Yawen
    Xiong, Wuti
    Tavakolian, Mohammad
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1239 - 1243
  • [8] Ensemble Transductive Propagation Network for Semi-Supervised Few-Shot Learning
    Pan, Xueling
    Li, Guohe
    Zheng, Yifeng
    ENTROPY, 2024, 26 (02)
  • [9] PTN: A Poisson Transfer Network for Semi-supervised Few-shot Learning
    Huang, Huaxi
    Zhang, Junjie
    Zhang, Jian
    Wu, Qiang
    Xu, Chang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1602 - 1609
  • [10] Learning to Self-Train for Semi-Supervised Few-Shot Classification
    Li, Xinzhe
    Sun, Qianru
    Liu, Yaoyao
    Zheng, Shibao
    Zhou, Qin
    Chua, Tat-Seng
    Schiele, Bernt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32